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2 P. C. CLEMMOW ON

A theoretical investigation is given of the phenomena arising when vertically polarized radio waves 
are propagated across a boundary between two homogeneous sections of the earth’s surface which 
have different complex permittivities. The problem is treated in a two-dimensional form, but the 
results, when suitably interpreted, are valid for a dipole source. The earth’s surface is assumed to

In the first part of the paper one section of the earth is taken to have infinite conductivity and is 
represented by an infinitely thin, perfectly conducting half-plane lying in the surface of an other­
wise homogeneous earth. The resulting boundary-value problem is initially solved for a plane wave 
incident at an arbitrary angle; the scattered field due to surface currents induced in the perfectly 
conducting sheet is expressed as an angular spectrum of plane waves, and this formulation leads to 
dual integral equations which are treated rigorously by the methods of contour integration. The 
solution for a line-source is then derived by integration of the plane-wave solutions over an 
appropriate range of angles of incidence, and is reduced to a form in which the new feature is an

where a and b are in general complex within a certain range of argument.
The case when both the transmitter and receiver are at ground-level is considered in some 

detail. If the receiver is a large ‘ numerical distance’ from the transmitter, further simplification is 
possible; the results then agree with some previously given by Feinberg, whose method, however, 
was quite different. The practical adequacy of Millington’s graphical technique for deriving 
attenuation curves of the ground-to-ground field is demonstrated, and the possibility of an increase 
of field-strength with distance is confirmed. This ‘ recovery effect ’ is illustrated by a numerical 
example in which the phase curve is also shown to rise steeply just beyond the boundary, indicating 
a phase velocity in this region much greater than that in free space.

A different approximate form of the general solution is obtained when the transmitter and 
receiver are sufficiently elevated; this is used to indicate the validity of the application of height- 
gain factors over an appreciable range of heights.

In the second part of the paper the restriction that one of the earth media should be perfectly 
conducting is waived. A condition, usually met in practice, is assumed, namely, that the modulus of 
the complex permittivity of each section of the earth is large. Approximate boundary conditions 
are then likely to be valid, and their introduction makes possible an analytical treatment on the 
same lines as before. The solution is again reduced to a form only involving, apart from standard 
features, integrals of the type G(a,b). Various features of the expression for the ground-to-ground 
field are examined; in a numerical example the attenuation and phase curves are given, the former 
being compared with the results of an experiment previously reported by Millington and the 
agreement shown to be good. The different approximate form of the solution when the transmitter 
and receiver are sufficiently elevated is briefly considered.

Finally, some ramifications of the theory are outlined.

The theory of the propagation of radio waves over a smooth, finitely conducting, homo­
geneous earth, neglecting atmospheric and ionospheric effects, is now well matured. The 
first correct discussion of the case when the distances from the transmitter are sufficiently 
small for the earth’s surface to be considered fiat was given by Sommerfeld (1909) over forty 
years ago, and independent fundamental treatments adopting the model of a spherical 
earth, appropriate for greater distances, have been presented more recently by Vvedensky 
(1935,1936,1937), Van der Pol & Bremmer (1937, 1938,1939) and Eckersley & Millington 
(1938). In practice, however, the earth’s crust may be significantly , and the

be flat.

integral of the type

1. I n tro du ctio n

IT. The genesis and nature of the problem
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3

need has long been felt for a theory which would at least take into account the more pro­
nounced variations in the electrical properties of the terrain over the region of interest. The 
most striking features of the complicated general problem thus presented appear when 
vertically polarized ground-waves are transmitted across a boundary of discontinuity, such as 
a coast-line, which separates two media of markedly different characteristics. A theoretical 
treatment of this aspect is given in the present paper.

RADIO p r o p a g a t io n  a c r o s s  a  b o u n d a r y

medium 2medium 1

Figure L Propagation path across a boundary separating two different media.

Figure 1 is a plan of a smooth area of the earth’s surface in which the boundary line I 
separates the (homogeneous) media 1 and 2, on which are situated, respectively, the trans­
mitter T  and receiver R.There are three branches of radio technique in which it may be 
necessary to consider the consequences of a physical model of this type:

(st) Field-strength assessment. The service area of a transmitter depends profoundly on the 
nature of the ground, and the presence of marked inhomogeneities in the earth s surface is 
therefore of practical importance. The first suggestion for estimating the variation of field- 
strength with distance along a composite path was made by P. P. Eckersley (1930), and 
latterly considerable attention has been given to this question, which is sometimes referred 
to as that of ‘mixed-path attenuation’.

( 6 ) Direction finding. In certain circumstances it has been found that the apparent bearing 
of T  from Rmeasured by standard radio methods can be appreciably different from the 
true bearing. This phenomenon was first noticed by T. L. Eckersley (1920), and is commonly 
known as ‘coastal refraction’.

(c) Navigation. The operative principle of some modern radio navigation equipment is 
the interpretation of accurate phase measurements. The significance, in this connexion, of 
the variation of the phase velocity of waves propagated over a homogeneous earth was 
stressed by Norton (1947) and Ratcliffe (1947 a), and the corresponding effect with a com­
posite path, which is complicated by the distortion of the phase fronts arising from the 
discontinuity at /, must also be considered.

These issues are, of course, interlinked, and a complete solution of the boundary-value 
problem illustrated in figure 1 would apply to all three. The analytical difficulties, however, 
are formidable, and in this paper the mathematical discussion is confined explicitly to the 
two-dimensional case in which the boundary between the media is straight and the trans­
mitter is an infinitely long (vertically polarized) line-source parallel to it. On the other hand, 
it seems very probable that, suitably interpreted, the solution may be applied to the problem 
when the source is a more practical aerial such as a vertical dipole. This contention (known 
to be true for a homogeneous earth: see §3 and also Booker & Clemmow (19506)) is evidently
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4 P. C. CLEMMOW ON

most reasonable at ‘normal incidence’, that is, when is perpendicular to I; and in con­
sequence the treatment here is chiefly directed at where the main features are expected 
to be independent of the angle of incidence, rather than at or (c), which would require 
a more specific consideration of oblique incidence. Nevertheless, the variation of phase as 
well as amplitude is established in the solution to be given, and it should therefore act as 
some guide in these latter problems \particularly is this so since subsequent work indicates, 
as also does that of Feinberg (1946), that to a marked extent the field along each radial line 
from the transmitter depends only on distance measured along that line and not on its 
direction relative to the boundary.

In what follows it is assumed that the earth’s surface is flat. As in the theory of a homo­
geneous earth, the analysis is governed by this assumption, and cannot therefore be extended 
to deal with the case of a spherical earth, for which a quite distinct treatment would be 
required.

distance (wave-lengths)

Figure 2. Field-strength (in decibels above an arbitrary level) against distance (in wave­
lengths) from the transmitter for homogeneous earths: medium 1; medium 2.

For practical purposes, the theory of propagation over the earth is conveniently expressed 
by means of graphs which show the variation of field-strength and phase with distance from 
the transmitter. The field-strength in decibels above an arbitrary level and the phase in 
degrees relative to that of the undisturbed free-space field of the transmitter are plotted 
against d/X,where d is the distance and Xthe wave-length. It should be noted that all such
curves in this paper are referred to a transmitter for which the free-space field in the 
‘radiation region’ falls off inversely as d;for a line-source this field is proportional to 1 
and a further factor 1 j jd  must be introduced in adapting the two-dimensional analysis to 
a point-source. Two typical flat-earth attenuation curves are shown in figure 2; curve 
(ct) is for a homogeneous earth of medium 1 and curve (b) for homogeneous earth of medium 
2, say, where the modulus of the complex permittivity of medium 2 is much greater than that 
of medium 1. The present problem, in short, is to calculate the corresponding curve for an 
inhomogeneous earth when the ground between the transmitter and receiver consists of
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5

medium 1 in one section and medium 2 in the other. And similarly with phase. A question 
of particular interest is the possibility of an i of field-strength with distance in the 
region just beyond the boundary, the ‘recovery effect’.

1-2. Previous work
Of the various theoretical approaches to ‘ coastal refraction ’ and ‘ mixed-path attenua­

tion’, two pieces of work, quite distinct in character from each other, seem of major im­
portance. One is an analytical approach, nominally directed at the former problem, 
initiated by Griinberg (1942, 1943) and developed by Feinberg (1944, 1945, 1946); the 
other, due to Millington (19496), an ‘ engineering ’ method for the latter problem.

Griinberg showed that the adoption of approximate boundary conditions and a standard 
application of Green’s theorem yield an integral equation for the normal component of 
E at the earth’s surface. He considered the case of two earth media, one of which has 
infinite conductivity, separated by a straight boundary, and took the incident field to be 
a plane wave. While appreciating that his integral equation could be solved by the exact 
method of Wiener & Hops (Titchmarsh 1937), he preferred an approximate treatment from 
which he established that the direction of propagation at a great distance beyond the 
boundary is the same as that of the incident wave. Griinberg’s work was generalized by 
Feinberg in a series of papers of which the fourth (Feinberg 1946) treats this problem, but 
with the difference that a transmitter located at a finite distance from the boundary is 
introduced. The analysis is so manipulated that an assumed value may reasonably be sub­
stituted for the unknown field component under the integral sign; in this way the problem 
becomes one of integration, and limiting expressions are derived appropriate to various 
positions of transmitter and receiver. These latter important results have apparently 
attracted little attention in this country, and the present work was completed before they 
became known to the author.* As will be clear from §2-1, the method of this paper is quite 
distinct and the treatment in some respects complementary; on the other hand, such 
formulae as do correspond show complete agreement.

An entirely different approach has led Millington (19496) to suggest a simple technique 
for deriving mixed-path attenuation curves, when the transmitter and receiver are both 
at ground-level, from the appropriate individual curves for homogeneous earths. His pro­
cedure has affinities with those of P. P. Eckersley (1930) and Somerville (Kirke 1949); but 
it is much more skilfully contrived than either of these, being designed, among other things, 
to satisfy the reciprocity requirement regarding the interchangeability of transmitter and 
receiver which these other two methods clearly violate; to this end it takes into account the 
one special result which can be deduced immediately from homogeneous earth analysis, 
namely the ‘ geometric mean formula ’, first given byT. L. Eckersley (1948, p. 78) specifically 
for the case of a spherical earth where the boundary is in the diffraction region of the trans­
mitter and receiver, and shown by Millington to be more generally applicable. Millington’s 
technique is based on arguments of a conjectural nature, but its predictions, including the 
possibility of a ‘recovery effect’, have proved to be in remarkably good agreement with 
experiments over a wide range of frequencies as described by Millington (1949*2, Elson

* I am indebted to Mr J. J. Myers for drawing my attention to the paper of Feinberg’s which is of 
particular relevance.

r a d io  p r o p a g a t io n  a c r o s s  a  b o u n d a r y
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6 P. C. CLEMMOW ON

(1949), Millington & Isted (1950) and Bramslev (1949; see also the Discussion following 
Millington & Isted (1950)). It is therefore of practical importance to note that the present 
analysis indicates that field-strengths estimated by Millington’s method are not likely to be 
appreciably in error, and an ‘ engineering ’ solution is thus given good theoretical backing, 
notwithstanding that its success appears to be to some extent fortuitous.

Finally, some tentative suggestions regarding a mechanism for coastal refraction, recently 
offered by T. L. Eckersley (1948, p. 97) and Ratcliffe (19476), should be mentioned. When first 
discussing this phenomenon Eckersley (1920) reasoned by analogy with ordinary refraction 
theory, but based his argument on the invalid concept of propagation due to Zenneck (1907); 
the later approach is similar in character, but invokes the correct analysis for a flat or curved 
homogeneous earth. Whatever value such ideas may prove to have will certainly be 
enhanced by considering them in terms of the present mixed-path solution, since this pro­
vides a much fuller description of the variation of phase across a coastline than has hitherto 
been available.

PART I. WHEN ONE MEDIUM HAS INFINITE CONDUCTIVITY

2. G enera lities

2 1. The idealized problem and method of solution
As already stated, the mathematical attack is on the two-dimensional form of the problem 

in which we have a vertically polarized line-source parallel to a straight boundary. This 
model may be compared with the idealization suggested by Millington (19496) of axial 
symmetry about a vertical dipole.

In this first part of the paper we also specialize by the assumption that one of the media 
(medium 2) has infinite conductivity, and this medium is replaced by an infinitely thin, 
perfectly conducting, semi-infinite sheet situated in the interface of the air (regarded as 
free-space) and medium 1, the latter being taken to fill the complete region below the 
interface (figure 3). The assumption of perfect conductivity for an earth constituent may 
sometimes be justified, sea water, for example, often fulfilling this condition to an adequate 
degree of accuracy. Furthermore, under most practical conditions the radiation penetrates 
n egligibly into the ground, so that the results given by the model of figure 3 are not likely to 
be significantly different from those obtained (were it possible) from a more realistic model 
in which medium 2 has a finite depth.

free-space R

Figure 3. The model of the idealized problem.

Since the more general problem involving two arbitrary media is discussed in the second 
part of the paper, it is perhaps as well to state why it seemed desirable to begin with a 
particular case. In the first place, with the model of figure 3 an exact solution is possible; 
this is not so when both media are arbitrary, and it is then necessary to assume approximate 
boundary conditions at the outset of the analysis; such a procedure (adopted by Griinberg
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7

& Feinberg) is, perhaps, open to objection, and it is reassuring to find that, when applied to 
the special case, it gives virtually the same result as the exact solution. Secondly, the 
geometric mean formula already mentioned refers, as is shown later, to circumstances in 
which ‘ray theory’ may be used with effective Fresnel reflexion coefficients of — 1 for both 
media; a model in which the reflexion coefficient of medium 2 is always +1 is therefore of 
particular interest in that it represents a situation where these conditions are completely 
violated. Thirdly, the analysis is somewhat complicated and may be more easily followed by 
starting with the special case which furnishes some relatively compact formulae and a 
straightforward physical interpretation.

The problem illustrated in figure 3 has so far been regarded as a generalization of that of 
propagation over a homogeneous earth. It may also be thought of as a generalization of the 
famous problem, likewise first solved by Sommerfeld (1896), of diffraction by a perfectly 
conducting half-plane, to which it would revert if medium 1 were free-space; and from this 
point of view the recovery effect appears perhaps less remarkable than might otherwise be 
supposed. In the present case, however, the features commonly associated with diffraction 
are obscured by the fact that both the line-source and point of observation are very near the

RADIO PROPAGATION ACROSS A BOUNDARY

0 ^

Figure 4. The line (01)across which the field of ‘geometrical optics’ is discontinuous.

earth’s surface, and this rules out the possibility of using any simple approximation of the 
Huygens-Kirchhoff type. On the other hand, as described below, an exact method of 
solution is available in which it is convenient to preserve the concepts of a ‘ geometrical 
optics ’ field and a ‘ diffraction’ field. In figure 4, T' is the image of T in the earth’s surface, 
and I  is the point at infinity on T'O produced; by definition, the geometrical optics field in 
the free-space region to the left of 01 is that which would obtain for a homogeneous earth 
of medium 1; in the region to the right of 01,that which would obtain for a homogeneous 
perfectly conducting earth; the residue of the total field is the diffraction field, which, in 
particular, has a discontinuity across 01 counterbalancing that of the geometrical optics 
field. A diffraction field can often be interpreted as arising from a fictitious source located 
at the diffracting edge; in the present case it may be thought of as some disturbance due to 
the boundary, although it cannot be conceived in terms of a line-source at for positions of 
the receiver as close to 01 as those with which we are concerned; for these positions the 
diffraction term is comparable with that of geometrical optics, and its evaluation forms the 
chief part of the analysis.

It is evident that the mathematics of our problem must represent a fusion of (exact) 
diffraction theory and propagation theory. The fundamental contribution in each of these 
fields was made by Sommerfeld, but the methods originally used bear no relation to one 
another and cannot be readily generalized in the way which we require. On the other hand,
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8
a powerful technique which expresses any electromagnetic field as an angular spectrum of 
plane waves (Booker & Clemmow 1950a) has been shown to be effective both in the theory 
of propagation over a flat, homogeneous earth (Booker & Clemmow 1950^)5 and in rigorous 
diffraction theory (Clemmow 1951). The method is appropriate to the present problem and 
is applied in this paper.

In § 3 some results from the theory of propagation over a homogeneous, flat earth are 
briefly derived in a way specifically suited to the subsequent discussion, attention is drawn 
to the explanation of the sign error in Sommerfeld’s 1909 paper which has given rise to 
a controversy recently revived by Epstein (1947) and others. It is then shown (§4) that for 
a composite path the geometric mean formula can only be justified on a ray-theory basis 
together with the assumption that both media have effective reflexion coefficients of 1. 
In §5 the problem of a plane wave incident on the interface shown in figure 3 is expressed in 
terms of dual integral equations and the formal solution obtained. The corresponding 
solution for a line-source is deduced by representing a cylindrical wave as an angular 
spectrum of plane waves, and some reduction is carried out (§§ 6, 7). The special configura­
tion in which both the transmitter and receiver are on the earth’s surface is considered more 
closely, and agreement found with Feinberg’s results in limiting cases; the recovery effect 
is illustrated by a numerical example in which the field-strength and phase curves are 
plotted (§8). In § 9 the different approximate form which the solution may assume when 
the transmitter and receiver are sufficiently elevated is examined with particular reference 
to the use of height-gain functions. The reason for the success of Millington’s technique 
when applied to the present problem is analyzed in §10.

P. C. CLEMMOW ON

2-2. Some remarks on notation 
The following remarks are intended as a general guide, and symbols not listed below are 

defined as they arise in the text.
With Cartesian co-ordinates x, y, z, the earth’s surface is taken as the plane = 0; the 

origin is located at 0 ,as in figure 3, the z-axis being along the boundary and the two- 
dimensional field independent of z. Polar co-ordinates r, 6 are also used, where cos 0, 
y — rsin 6,0< # < 2 t7. Other co-ordinates are:

f0:A co-ordinates of the transmitter T
R distance from T

S , i polar co-ordinates measured from the image■

I | S cos | horizontal distance from T
r+r0

The configuration is illustrated in figure 5.

Figure 5. Notation and configuration.
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Rationalized m.k.s. units are used, and a time factor exp (iwf) suppressed throughout. 
We write

r a d io  p r o p a g a t io n  a c r o s s  A BOUNDARY 9

el permittivity in farads/metre,

si permeability in henrys/metre,

0 conductivity in mhos/metre,

e = el — io/o) complex permittivity,
k — (oJ{e[i) propagation constant,

Z = l / Y  = J(jule) intrinsic impedance,

these symbols referring to free-space (for which =  0, ej), and the same symbols with 
dashes denoting the corresponding quantities for the earth (medium I).

A two-dimensional electromagnetic problem is essentially scalar, the vertically polarized 
field H =  (0, 0, Hz), E =  (Ex,Ey,0) being expressible in terms of Hz via Maxwell’s equations

e  ( 1 )
* ik dy ’• i

Formulae are therefore given for Hz only. In propagation theory it is perhaps more usual 
to work in terms of the component of E normal to the earth’s surface, but for the radiation 
field at sufficiently small angles of elevation

Ey =ZHz, (2)

and so the distinction is unimportant. For convenience we suppose that the transmitter 
(line-source) has a circular polar diagram, though an arbitrary polar diagram could equally 
well be considered; its undisturbed field in free-space is then given by

p-ikR
h , =pi») • (s)

Superscripts attached to the field components have the following significance

r, r, j- incident, reflected, scattered field respectively; 
g, d geometrical optics, diffraction field respectively; 
p field associated with an incident wave.

Three abbreviations, although defined in the text, are listed here for reference; they occur 
frequently in the analysis:

F{a)  = e isl2s V iA2dA,
J a

K{a) — 1 — 2i
I* co p —iA2

G[a, b) =  belfl2J ^ q rp

Finally, we note that S(p)is used for the 6 steepest descents ’ path of integration passing 
through the real angle (f>; no confusion should arise between this and the S defined above.

V ol. 246. A. 2
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10 P. C. CLEMMOW ON

Z. Some results from  t h e  analysis fo r  a  homogeneous e a r t h

In this section we briefly treat the problem of propagation over a homogeneous earth. The 
purpose is to obtain the standard results by a method and in a form with which direct com­
parison can be made when we come to the mixed-path problem.

We consider a line-source, specified by (3), situated in free-space above a homogeneous 
earth of finite complex permittivity occupying the region y <  0, and we are interested in the 
radiation field at small angles of elevation (kR^> 1, f  small).

The basic formula for the factor by which the free-space field must be multiplied to obtain 
the field in the presence of the earth is (22). When the transmitter and receiver are both at 
ground-level it reduces to (24). At large ‘numerical distances’ useful simplified results are 
(25) for this latter case, and the ray-theory formula (26), applicable when the transmitter 
and/or receiver are sufficiently elevated. Also of great value are the ‘ height-gain ’ factors 
implicit in (31).

3 1 . The general solution
Confining the discussion to the region y/z0, we consider a plane wave

fjpi — î/cr cos (6—<x)

which is incident on the earth’s surface at an angle This gives rise to the reflected wave

HP/ = /) (sin a) ei*rcos(y+a), (5)

where /<sinœ) =  { s i n }/ {sina + - J [ 1 cos2a )̂
n2)) (6)

is the earth’s Fresnel reflexion coefficient and

II II m I. IP ar v—V
—'' (7)

assuming that the permeability of the earth is the same as that of free-space. In order to 
derive the field for a line-source situated at r0, we express the incident cylindrical wave 
(3) as an angular spectrum of plane waves of the type (4). Introducing the appropriate 
phase factor exp { — ikr0cos (#0 — a)}, we have

H lz =  -y e-iAro cos(0o-a) eikrcoS(d-a)<ja, for y<Z/0, (8)
j(27T)Jc

F igure 6. Paths of integration in the complex a-plane.
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11RADIO PROPAGATION ACROSS A BOUNDARY

where the path Cis shown in figure 6. Cis only one of an infinite set of equivalent paths, 
but is particularly convenient in that along it cos ranges over real values from T oo to 
(Booker & Clemmow 1950 a,b ;Clemmow 1951). The reflected wave corresponding to (8) 
is evidently found by multiplying (5) by (27r)_iexp{ —i[A:r0cos +5^]} and integrating
with respect to ot along C; thus

If we write
//(sin a) =  yo(sina) — 1

0—\\7T r
y(27T)J

_2 
n

/) (sin a) elMcoŝ +aMct.

COS2 CL
n2 JM i sina + 1 cos2a\i

(9)

( 10)

the complete field becomes
H  = J  (in) e-i" {Hg\kR)+H™(kS)}+A(S, (11)

P~ii7t r
where A(S, f )  = M77TS/(sina) eifcScoŝ +a)da. (12)

Vv Z7T)J c
The term A(S, f )  in (11) is the field which must be added to that pertaining to a perfectly 
conducting earth, and its evaluation constitutes the core of the problem. It has been shown 
elsewhere (Booker & Clemmow 19506) that this term is essentially equivalent to the free- 
space field of a Zenneck wave diffracted under the image line T' (figure 5). A Zenneck 
(1907) wave is a plane wave incident on the earth at the Brewster angle defined by

tan aB =  1 jn(13)

and an appeal to the well-known formula of edge-diffraction theory leads to the required 
result for the radiation field. For our present purposes, however, we proceed to an approxi­
mate evaluation of (12) by using an extension of the standard method of integration by 
steepest descents. The technique, suggested by Pauli (1938), was applied to the three- 
dimensional form of the present problem by Ott (1943); it has been considered in some 
detail by the author (Clemmow 19506) and proves indispensable in the sequel.

The first step is to displace the path of integration in (12) to that of steepest descents. 
We denote by S((/>), where (j) is any real angle between 0 and 77, the path, shown in figure 6, 
over which the new variable of integration

t — s,\n\{oL — (j)) (14)

traverses real values from —00 to +00. Then the required path of steepest descents is 
Ŝ Ts — i/r), the ‘predominant’ value of ot (the saddle-point) being clearly n — ijr, as would be 
expected from physical considerations. Now the singularities of //(sin a) are branch points

cos a =  (15)
1

V(i+rc2) ;
and poles at sma -smaD -

and since 0 ^ a rg w > —̂ 7r, these are located somewhat as in figure 7. It follows that, in 
displacing Cto S(TT — iJr)(which cuts the real axis at an angle of 45°) no poles are captured.
On the other hand, a branch-point may be crossed, and certainly is in the case of interest 
when ijf is small (or nearly equal to 77; unless otherwise stated we assume without loss of 
generality that ^^^77). Strictly, therefore, an integral round the corresponding branch-cut
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12 P. C. CLEMMOW ON

should be included; however, we follow the standard practice and neglect this contribution, 
a procedure which is justified either by the fact that has an appreciable imaginary part, or, 
when this is not the case, by the fact that | « | >  1 (Ott 1942). Equation (12) may therefore
be written r

A(S, f )  =-777r\ />'{sin — a)} cos a da. (17)

It is now permissible to put a -  0 in that part of the integrand which is £ slowly varying’ in 
the vicinity of the saddle-point. When f  =0, the only factor of //{sin ( f  — a)} to which this 
may not be applicable is that containing the pole at ijr + ocB. Hence

where

p-ji7t r
A(S, *) =  i^ T T sirse c i^ -a ^ /j 'ts in ^ )  cosec i  (^ -  a +«„) e" “ s «cte, (18)

ZJ[Z7T) J S(0) 

/  (sin 3) =  -  ̂  y  (1 -  (sin a +  sin «„) / {sin a + 1 y ( l  -  }. (19)

X X S 2

0
p ' 77

X X
L.

Figure 7. Singularities in the complex a-plane: crosses represent branch-points,
dots represent poles.

Finally, it can be shown (Clemmow 1951) that the integral in (18) is exactly expressible in 
terms of the complex Fresnel integral

F(a)=eia2s°e-iA2d/t, (20)
J a

with the result that

A(S ,f)  =  iy 2 s e c K ^ -a £) / ( s in  f )  fTikSF{J{ZkS)s in i(^ + a B)}. (21)

This expression is essentially equivalent to the several different forms appearing in the 
literature, for example, those given by Norton (1941) and Ott (1943). Since we are only 
concerned with small values of f ,  simplicity is achieved without appreciable loss of accuracy 
by writing the factor by which the free-space field must be multiplied to give the actual

field “  A =  1 +{1 - 4iy0r(y)}e-‘i<s--R), (22)

where y =  J{\kS) (sin f  +sinaa), y0 =  J{\kS) sin (23)

It will be recognized that — iŷ  is equivalent to the ‘ numerical distance' as originally defined 
by Sommerfeld (1909) for f  = 0, and that —iy2 is effectively the generalized form introduced 
by Van der Pol & Niessen (1931). Expression (22) is equally applicable to a point-source.
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3 2. Special cases
Several simple formulae which can be derived from the foregoing analysis will now be 

given. These help to present a picture of how the field varies, and later we shall look for 
parallel results in the mixed-path problem.

Our chief concern is with the case when both the transmitter and the receiver are on the 
earth’s surface (a distance d apart); the measured field-will then be called the ground-to- 
ground field, and equation (22) shows that it is given by

A =  2{1 -2 iy 0T(y0)} =  2 A(y0), (24)

the function K(a) being that introduced in §2*2. When | y0 | <̂  1, A =2, as though the earth 
were almost perfectly conducting; whereas, for | y0 | >  1,

RADIO PROPAGATION ACROSS A BOUNDARY 13

A-
J i

2i
kd sin2

(25;

The derivation of (25) makes use of the asymptotic expansion of the Fresnel integral, 
which has, in this case, to be taken to the second term. On the other hand, when the trans­
mitter and/or receiver are sufficiently elevated the first term suffices; applied to (21) it leads 
to the field of ray theory, which may be written

-i kR -ikS
7 m + p [ s in i ) 7 W y (26)

This result is, of course, that which would be obtained by removing the complete function 
//{sin (ir—ot)}from under the integral sign in (17) at the predominant value — 0. The 
precise conditions under which it gives an adequate representation of the field cannot be 
put in a simple form, but a useful rough criterion is

% o+y) I sinaB | > 1, (27)
where y0and yare the respective heights of the transmitter and receiver.

Finally, we must introduce the height-gain function. The analysis of §3-1 seems to lead 
to a more general derivation than that in the literature (e.g. Norton 1941). With some slight 
transformations, the incident wave (8) may be written

m  =

and the reflected wave (9)

-Hit

V(2tt) S( 0)
cos {k [yo — y) sin a} e cos a da, (28)

li it
Hz= ™ J J M sin«) +/>( —sina)] cos[% 0+y) sin a]

—i[yo(sina) — p[ — sin a)] sin [A:(y0+^) sin a]} e~iM cos a da. (29)

Using (6), combination of (28) and (29) gives the total field

/ /
~\l7T

V ( 2 tt) J 5(0) {v^ °  ~ y
j cos (ky0sin a) cos sin

n j  (

cos2 ot\sin (ky0sin ot) sin sin
n2 1 sin2

cos2 a\ sin [k(y0-\-y) sin a] 1 2 sin2 -ikd cos a
sm a sin2 a—-si 1 nA

cos2 a\ 
~ nT )

d ot. (30)
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14 P. c .  CLEMMOW ON

When it is permissible to put a =  0 in that part of the integrand contained in the curly 
bracket we have ^  =  (1 + i^ oSinafi) (i + % sinaB) (31)

where Hz0 denotes the ground-to-ground field. Since the height-gain factor in (31) is 
perhaps most often considered with reference to field-strength only (e.g. Eckersley & 
Millington 1939; Norton 1941), it may be as well to emphasize that it is equally applicable 
to phase. It is not easy to judge precisely up to what heights it is valid, but our derivation 
shows that a sufficient criterion, at least, is that which holds for a perfectly conducting earth 
(sin% =  0), namely, A%H*/2) <kd. (32)

3 3. Sommers eld's method
The method outlined in §3T indicates the type of analysis which is used in the sequel. 

There is, however, an alternative procedure, equivalent to that originally adopted by 
Sommerfeld (1909), to which it also proves necessary to refer.

The substitution cos a =  A in the integral (9) gives
e U77 po A2)} M (33)

Provided that J  (I —A2) is defined as that branch with a negative imaginary part, the integral 
in (33) may be evaluated by closing the path of integration with an infinite semicircle above 
the real axis and appropriate detours round the branch-cuts and poles. It can be shown that 
the poles of ̂ {^/(l — A2)} lie in the ‘ upper' sheet of the Riemann surface, and the singularities, 
branch-cuts and path of integration appear formally as in figure 8.

Figure 8. Singularities and branch-cuts in the complex A-plane on Sommerfeld’s method.

An appreciation of the positions of the singularities relative to the path of integration is 
necessary to an understanding of the subsequent analysis, and should be particularly noted 
in view of a recent suggestion by Epstein (1947) that the latter ought to pass above the pole 
at P2.In this way Epstein hoped to explain a discrepancy between an expression for the
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15r a d io  p r o p a g a t io n  a c r o s s  a  b o u n d a r y

final solution originally given by Sommerfeld and all later versions. This discrepancy (a 
sign error in the limit of an integral) was first pointed out by Norton (193 5) shown by 
Burrows (1936,1937) to be in amount just the * surface-wave' term contributed by the residue 
of the pole P2.Epstein held that the subsequent controversy concerning the 6 existence ’ of 
this surface wave had never been resolved, a view not unsupported by the text-books (e.g. 
Stratton 1941, p. 585; Schelkunoff 1943, pp. 430, 431), and his paper inspired a number of 
others on the same subject (e.g. Kahan & Eckart 1948 1949 1930, further papers
have appeared more recently). These have been criticized by Bouwkamp (19480, b, 19500, b, 
1951) and it has been established that Epstein's suggestion is incorrect. The essential error 
(in the present author’s opinion) made by Sommerfeld has, however, been overlooked in 
this revival of an old controversy: namely, that (in the notation of his 1909 paper) he put 
a =  J p when a2 was real and positive, instead of —Jp, as his choice of branch-cuts in fact 
demanded. This explanation was given by Niessen (1937).

3 4. Some distinctive features of the analysis
With reference to the foregoing analysis, it is worth emphasizing several points, an 

appreciation of which will help to clarify the subsequent work.
(1) A method of solution which is physically straightforward is to express the incident 

cylindrical field as an angular spectrum of plane waves, choosing a path of integration which 
is such that the individual plane waves are essentially ‘down-coming’, thus avoiding any 
ambiguity in deriving the corresponding reflected field. The resulting integral is con­
veniently handled by the method of steepest descents.

(2) The mathematics of the problem is characterized by certain poles and branch-points. 
In distorting the original path of integration to that of steepest descents no pole is ever 
captured; but a complication arises from the fact that one may lie very close to the 
saddle-point.

(3) When the earth is homogeneous there is symmetry about the plane through the line-
source T  and its image T' (figure 5). This symmetry expresses itself in the analysis by the 
appearance of two relevant pairs of singularities, Plf Bx and B2 (figures 7, 8). The former 
come into play when f  = tt,the latter when f  =0.

(4) In Sommerfeld’s method of solution a different complex plane of integration is 
adopted in which the poles Px and P2appear in the upper sheet of the Riemann surface. 
This procedure suggests that the residue of Pxor contributes explicitly to the field; but 
such a separation is artificial and only due, as Weyl (1919) was the first to point out, to the 
rather unnatural mode of attack.

(5) The solution is reciprocal in the sense that it is unaffected by the interchange of 
transmitter and receiver.

4. T he  geometric mean formula

In this section we discuss the application to the mixed-path problem of the geometric 
mean formula (mentioned in §1-2) with particular reference to its limitations.

Suppose that the transmitter and receiver are at equal heights h. From (31), the height- 
gain function is then (1+itisin<xs)2. (34)
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16 P. C. CLEMMOW ON

It is clear from (32) that there could be practical conditions, particularly if were very 
large, under which (34) is valid when

khj sin olb \|> 1, (35) 
and it then becomes effectively — {kh sin 2. (36)
In these circumstances the ground-to-ground field would be given by (25); an application 
of (36) therefore yields the corresponding field when the transmitter and the receiver are 
at equal heights h in the form __ e-iM

J{kd) kdH7 (37)

Now equation (37) has been derived for a homogeneous earth, but is independent of the 
electrical properties of the ground. Millington (19496) therefore suggests that it should be 
equally applicable to an inhomogeneous earth, and a reverse use of two height-gain 
functions, appropriate to the respective media above which the transmitter and receiver are 
located, then enables him to deduce the ground-to-ground field in this case; the result may 
be written Hnz =  J{HlzH2z), (38)
where Hlz and H2z are the fields pertaining to homogeneous earths composed of the above- 
mentioned media, and Hl2zis the field for the composite path. Millington presents the 
geometric mean formula (38) with explicit reference only to ground-to-ground field- 
strengths, but it is evidently likewise applicable to the complete field (including phase) at 
all equal heights of the transmitter and receiver up to a maximum determined by the media 
in question; and, incidentally, the hypothesis of transmission normal to the boundary may 
be waived.

The fact that a linear differential equation leads to a solution expressed as the geometric 
mean of two other solutions may appear startling at first sight, but it should be borne in mind 
that the different fields are all (approximately) proportional to the same inverse power of 
d, which is the only variable involved, so that (38) is simply a relation between the constants 
of proportionality.

Millington’s recognition of the geometric mean formula plays a considerable part in the 
development of his technique. In appropriate cases it fixes the mixed-path curve at 
sufficiently great distances beyond the boundary, and together with the further reasonable 
assumption that, to a first order, the curve for points up to the boundary coincides with the 
corresponding curve appropriate to a homogeneous earth, gives some indication of the field- 
strength variation. The point we wish to make here, however, is that use of equation (38) is 
only justifiable in special circumstances. The present analysis suggests a criterion for its 
validity, namely, that the transmitter and receiver should be large numerical distances from 
the boundary relative to medium 1 and medium 2 respectively, speaking in terms of the 
model of figure 1; in fact, that this condition is both necessary and sufficient is established 
more rigorously in part II.

The limitations of equation (38) are perhaps most vividly brought out by noticing that 
(37) is equivalent to an application of ray theory using an effective reflexion coefficient of 
-1 ; for, from (26), this gives the field

Hz —
^ ikd

7 F )
{X -e-i &($-<*)}. (39)
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but since (32) must be presumed to hold, we have

k(S -d ) = 2kh2ld<4l,(40)
and hence (39) approximates to (37); furthermore, p(sin 4= 1 if sin <51 sin |, an
inequality which is implicit in (35) and (40). In the problem which we are about to consider, 
one of the media is a perfect conductor and therefore has a constant reflexion coefficient of 
+ 1 ; in this case it appears most forcibly that no argument can be suggested by which the 
field can be quickly estimated when the transmitter and receiver are on opposite sides of the 
boundary in positions which are sufficiently near the earth’s surface to be of interest, and it 
seems that convincing results can only be obtained by a thorough analytical investigation. 
To this we now proceed.

RADIO PROPAGATION ACROSS A BOUNDARY 17

5. T he solution  fo r  an  in ciden t  pla n e  w a v e

This section is devoted to the problem in which the plane wave (4) is incident on the 
interface depicted in figure 3; the affix p is dropped. The method of solution is precisely that 
developed elsewhere (Clemmow 1951) in connexion with diffraction problems of a similar 
type. The currents induced in the diffracting sheet give rise to a scattered field which is 
expressed as an angular spectrum of plane waves, and this representation enables the 
boundary conditions to be formulated in terms of dual integral equations (Titchmarsh 1937) 
which can be solved by the use of contour integration.

5 1 . The formulation in terms of dual integral equations 
In the region ŷ0, the field of the incident plane wave is

fH1' =  (0, 0,1) ei/crcoŝ “a), (41)
1 Ez" — Z(sin a, — cos a, 0) cos (6Ua). (42)

If the perfectly conducting sheet were absent, this would give rise to a reflected wave

|H r =  /)(sina) (0, 0,1) eiZcrcos<5+a), (43)
{E r = Zp(sina) (-s in a , - c o s a, 0) eî cos(9+a), (44)

in the region 0, and a transmitted wave
fH* =  r(sina) (0, 0,1) (45)
\ e * — Z'r (sina) (sina', — cosa',0) (46)

in the region y ^ 0 ;  where a'is defined by Snell’s law

A; cos a =  k'cos a', (47)

and the Fresnel reflexion and transmission coefficients are

U in a )  =  {sina - i y ( l - ^ ) J / { s m a + i y ( l - ^ ) ) ,  (48)

r(sin a) 2 sin a sina+ 1
n

cos2a\)
n2 (49)

When the perfectly conducting sheet is present there will be, in addition to the above fields, 
a scattered field generated by currents induced in it. We express this scattered field in terms

Vol. 246. A. 3
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18 P. C. CLEMMOW ON

of two angular spectra of plane waves, one for the transmission in free-space, the other for 
that in the earth. For the half-space y> 0 the non-zero field components may be written as

//>=(* P(cOS/?) z-ikrcmid-M&P, (50)
J c

< Esx = -z[ sin/?P(cos/?) e~i/crcos(<?_̂ d/?, (51)
J c

Es — z (cos /? P(cos /?) e~lkr cod/?; (52)
t Jc

and for the half-space y< 0 as

H'zs = \  Q(cOS/?) e-ik’rcos(.d+P)d(53)
Jc

. E'xs =  Z's sin/?'Q (cos/?) ^  (54)
v c

=  Z ' f  cos ft'Q(cos/?) e - i/c>cos(y+^)d^. (55)
< J C

A correct behaviour of the scattered field at infinity (outgoing waves) is implicit in these 
representations. Furthermore, in (53), (54) and (55) /?' is some function of /?,and cos/?) 
must be expressible in terms of P{cos/?). In order to satisfy continuity conditions across 
y = 0,/?' is clearly given by *Cos/? =  A'cos/?', (56)

corresponding to (4 7 ) ; and again, the continuity of demands that

— Z sin /?P(cos /?) =  Z'sin/?'Q(cos/?), (57)

a relation which reduces correctly to P(cos/?) — — H(cos/?) when =  1. Substituting from 
(56) and (57) into (53), (54) and (55), the components of the scattered field in the region 
y ^.0 become

H'zs =  -J *  I f o . f i )  (58)

< =  —z s  siny?P(cos^) e~i t o c o s ik'ysin^'d/?, (59)
v c

Eys = z s  sinytfcot/?'P(cos/?) e - 1**C08̂ +i*>sin^,d / .  (60)
. J c

The complete scattered field is thus expressed in terms of a single angular spectrum function 
P (cosyd1).

Now the total field is given by

Hz = H'z+ H l± H *z,for z /> 0, (61)

H'z = H lz + Hzs,for z /< 0. (62)

T he boundary conditions w hich have yet to be satisfied are

(I) Hz =  H 'zat y =  0, x <  0;

(II) Ex{ — £■() =  0 at =  0, 0,
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But aty  =  0, H lz + Hrz =  Hi andE[ + Erx =  22* ;hence, using (61) and (62), (I) and (II) may 
be expressed in terms of the unknown scattered field, being respectively replaced by

(I') Hi =  Hzsat y 0, x< 0 ;

(IT) Esx =  — Ex = 0, *>0.

If we make the substitution cos/? =  A in (50), (51), (52) and (58), (59), (60), and also 
write cos cl — A0, (I ) and (IT) yield a pair of integral equations for -P(A), namely,

11 v ( i - m U t 1 - ' 12/ ”2) , x_________ __________ P(A) e - ^ AdA =  0 for *<0, (63)
-V(l —A2) 7 (1-A 2/h2)V —oo U

I  U ( i - 4 )y (i--t§ /«2)
P(A) e_itoAdA =  ——------------------------ eiA*Ao for *>0. (64)

•U  V(i - a§)+^V (i - a§/«2)

These are dual integral equations of a type considered elsewhere, and for 1 they reduce 
to those arising in the Sommerfeld half-plane diffraction problem (Clemmow 1951). Before 
solving them it is worth noting several alternative formulations.

RADIO PROPAGATION ACROSS A BOUNDARY 19

5 2. Alternative formulations

It has been pointed out in a previous paper (CAemmow 1951) that the use of dual integral 
equations in certain diffraction problems is an alternative to the use of a single integral 
equation. The latter method has been developed by Copson (1946a, and a number of 
American authors, and would be applicable in the present case. For a general solution of 
equation (63), obtained by taking its Fourier transform, is

7 ( i - > 2) + l / ( i - ' i 2/”2)
-----------------------------P(A) = dfc (65)

where Jx(£) is an arbitrary function, to be identified, in this application, with the current 
density in the conducting sheet. If we write formally

o f"  P (1 -* 1 M (1  -**/»*)
-  ------------ --------------- eiA:̂ _A;)AdA =  <F(A I |), (66)

the substitution of the value of P(A) given by (65) into (64) leads to a single integral equation 
for Jx[£), namely,

lk\ Jx{g)<b{k \x-E>\)d i = —-------------------eitoA° for x>0. (67)
Jo V ( i - ^ ) + ^ |( i - A i /» 2)

3-2
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20 P. C. CLEMMOW ON

As written, the integral in (66) is not convergent, but its interpretation is quite clear. For 
consider a current element JJfc) d£, flowing in the direction, situated in the air-earth 
interface at y = 0, x = £ (the conducting sheet now being presumed absent); the field to 
which it gives rise can be obtained by using the method of §3-1 in conjunction with the 
appropriate angular spectrum, and in the region y>  0 the ^-component of E is found to be

—̂ ~ *■/<:(£) d^J* {1 — y0(sin/?)}sin2/?el/cn c o s d/?, (68)

where r1 and 6Xare polar co-ordinates measured from = 0, x £ .The integral in (68) 
converges for any given value of dxin the range Its formal expression at 0
(or is), which is (66), may be defined as the limit when ^ -> 0  (or it). Alternatively, con­
vergence at 6X =  0, 77 can be obtained by a permissible distortion of the path C. Thus (68)

reduces to - \ k Z J K[i)df<D(A | * - £ j j (69)

on the interface y =  0. The corresponding expression for at =  0 due to a current sheet
occupying y =  0, æ>  0 is obtained from (69) by integrating over £ from 0 to oo. In order to 
satisfy the boundary conditions on the perfectly conducting plate, this value of Ex must be 
equated (for x>0)to that of — E[at y — 0; the result is the integral equation (67). Equation 
(67) is of the type susceptible to the method of Wiener & Hops (Titchmarsh 1937). The 
Wiener-Hops procedure would be facilitated by the fact that the kernel <D(A; | x—£ |) is 
defined as a Fourier integral in (66), but this really emphasizes the irrelevance of bringing 

into the analysis and indicates that the dual integral equations offer a more direct line 
of attack.

Another slightly different formulation of the problem may be devised. So far we have 
considered the.complete field in terms of a ‘ correction ’ to the field existing in the absence 
of the perfectly conducting sheet. Now let us consider it in terms of a ‘ correction ’ to the 
field which would exist were the conducting sheet infinite instead of semi-infinite. This 
alternative approach (associated when n — 1 with the exact electromagnetic form of 
Babinet’s principle) indeed yields slightly simpler integral equations than those given above, 
owing to the fact that we are dealing with a vertically polarized field; on the other hand, 
the new ‘ correction ’ field has no obvious physical interpretation. If, then, the whole plane 
y — 0 were occupied by a perfectly conducting sheet, the field in the region >  0 would 
consist of the incident wave (41), (42) together with a reflected wave

jH r =  (0, 0, 1) eikrcos(d+(70)
\Er =  Z( —sin oc, — cos 0) ei/crcos(|9+a), (71)

and there would be no field in z/<0. When the conducting plate only occupies the area 
y =  0, æ> 0 ,  there is an additional field which maybe cast into the form (50), (51), (52) when 
y ^ 0 and into the form (58), (59), (60) when y<0. The requirement that the resultant 
for the complete field should be continuous is automatically satisfied, and the boundary 
conditions which remain to be considered, expressed in a form analogous to (T) and (IF ), are

(I") Hi+H'+H*. =  H'zs at 0, x< 0 ;

(IF) El{ =  E fi  =  0atz/ =  0 ,x> 0 .
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These yield the dual integral equations

r a d io  p r o p a g a t io n  a c r o s s  a  b o u n d a r y

y ( i-A 2) +  - N/ ( i - A > 2)

J  -CO f t
J ( l  — A2) J ( I  — A2/w2)

P(A) Q-ikXx(jq =  — 2 eifc*Ao for xCO,

P(A) e~i/c*AdA =  0 forx>0.

(72;

(73)

Again, equations (72) and (73) may be replaced by a single integral equation. The 
Fourier transform solution of (73) is

k s° Kx(g) e“ « d |,  (74)P{ 277.
and substituting for P(A) from (74) into (72) we get

k[ Kx(QY{k| x -  £ |) d£ =  -  2 eiA*A° for ^<0,

where ¥ ( * ! * - £
i

277

"" V ( l - ^ )  +  i 7 ( l - A V )

J
1

eW*-DA&L
/ ( 1 - U ) V ( 1 - A 2/ tz2)

(75)

(76)

5 3. The solution
We now revert to equations (63) and (64), and proceed to solve them by the technique 

given in a previous paper (Clemmow 1951).
The path of integration is along the real axis except for indentations below the branch­

point at A =  — 1 and above that at A =  +1. A function which is free of singularities and zeros 
throughout the region above the path of integration, and of algebraic growth at infinity 
therein, is denoted by U; a function with the same properties below the path of integration 
by L.

Then a solution of (63) is

■ / ( l - ^  +  U U - A 2/*2)
---------------------------- P(l) =  U(k), (77)
- V ( i - ^ 2) V ( i - - t> 2)

where the left-hand side has been written in a form which reduces to P(A) when — 1. 
A corresponding solution of (64) is

P(A)
1 m

2 m V ( l  — Ag) +  U ( 1  - Ao/»2) i ^ A° ) ^ + A o ) ’
(78)

provided that the path of integration is indented the pole at A — — A0.
The elimination ofP(A) from (77) and (78) makes it clear that the crux of the problem is 

the expression of 1
V (l-A 2)+ ^ V (l-A 2/722) (79)

as the product of a ^/-function and an L-function. The explicit factors could be obtained 
from the general Wiener-Hops theory, but they would seem to be too complicated to be of
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22 P. G. CLEMMOW ON

much use here.* However, this difficulty is circumvented in the subsequent analysis, and 
so we merely write

~ J ( i  - A 2/ « 2) / { 7 ( i  - A 2) + 1 7 ( 1  - A 2/ ” 2) }  =  l / f t f i W A W } .  ( 8 ° )

without, for the moment, inquiring further into the nature of £7̂ (A) and ZJA), except to 
note that £7j(A) =  Z J —A); the particular form of equation (80) has been chosen to make 
t/j (A) and ZJA) reduce to unity when n =  1. The solution of equations (77) and (78) is now 
seen to be .........................

m  = 2ffiZi(A0) ZJA) (A+Aq)
(81)

where we have applied the result Ux(A0) =  L x( — A0). Alternatively,

P i r\ — x 1 cos cos \ f t  
(cosA) ^ 7^(cos ot)Lx(cos'Jp cosa +  cos/7'

At this juncture the opportunity may be taken to interpolate two remarks concerning the 
nature of our result. First, it is to be noted that (82) reduces to the correct expression for the 
Sommerfeld half-plane problem when n — 1; this check is particularly important in con­
firming that the solution has the right order of singularity at the origin, as the question of 
uniqueness is one that demands some attention in diffraction problems (Bouwkamp 1946; 
Meixner 1949; Copson 1950; Jones 1950; Glemmow 1951). Secondly, we stress the obvious 
symmetry of (82) in a and ft; as will become quite evident shortly, this symmetry is synony­
mous with the reciprocity criterion, and it is worth convincing oneself that it really demands 
the factorization expressed by (80). By comparison, we may record the failure, in this 
respect, of the solution suggested by Raman & Krishnan (1927) for the problem of the 
diffraction of a plane wave by an imperfectly conducting sheet; the method proposed by 
Pidduck (1946, 1947) is likewise at fault.

The scattered field is given by (50), (51), (52) or by (58), (59), (60), according as y is 
positive or negative respectively, with the value (82) for jP(cos . The complete field is then 
determined by (61) and (62). Thus, for y >  0,

Hz = ei/cr cos (d~a'> -+- p(sin a)ei/crcoŝ +a) +  iZ, (83)

where i c o s ja  C cost/?   , - i t r « ,(* -» H/?-
77 Lx(cos a) J CLX(cos ft)(cos ft+ cos a) ” '

and for z/<0 H'z =  r(sina) eik'rcos(9 a')4- (85)

where =  f . ------v
ttL ^ cosoc) J c smp L^cosp) (cos/; +  cos a) r (86)

The corresponding expressions for Ex, Ey,and E'x, E'y may be written down in a like 
manner.

* Senior (1952), in considering the rather similar problem of diffraction by an imperfectly conducting 
half-plane, has in effect worked out the ‘split’ for l/n+ A2) which is a valid approximation to (79) 
when I n I 1 (see §12-2).
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r a d io  p r o p a g a t io n  a c r o s s  a  b o u n d a r y 23

6 4. A transformation of the solution

In the propagation problem the field below the earth s surface is generally of no concern, 
the subsequent discussion is therefore confined to the region z/^0.

Following a common practice in diffraction theory, our first aim is to separate the 
expression (83) for Hzinto the sum of a geometrical optics term and a diffraction term, as 
discussed in §2T. To this end, the path C in (84) must be distorted into ►$*($), the path of 
steepest descents ; a knowledge of the nature and location of the singularities of the integrand, 
in particular of l/L^cos/?), is therefore necessary.

Since the functions and Zq are defined by (80) in terms of A, it is desirable, for the 
moment, to revert to the complex A-plane. Referring to §3T, equation (16), the poles of

(80) are given by A = ± n /J (l+ n 2), (87)

the upper and lower signs corresponding to Pland respectively in figure 7. We are now 
confronted with a slight difficulty. If in the complex A-plane we adopt the branch-cuts 
appropriate to the relations A =  cos/?, 7 (1—A2) =  sin7 , as shown in figure 9 (7 (1—A2) 
positive real part), the poles given by (87) do not appear in the upper sheet of the Riemann 
surface; this is evident because the upper sheet in the A-plane then maps into the region 
0<^/?<7rin the 7-plane, and P1 and P2lie outside this region (figure 7). On the other hand, 
in order to determine which pole belongs to 1/UfX) and which to 1/LfX),  it seems necessary 
to bring them into the upper sheet of the Riemann surface; this is achieved, as indicated in 
§ 3-3, by introducing the branch-cuts shown in figure 8. For the moment, therefore, we must 
think in terms of the technique of closing the path of integration with an infinite semicircle 
(corresponding to Sommerfeld’s original procedure for the homogeneous earth analysis), 
although this is not the most suitable approach, and not the one which we shall eventually 
use; it is then clear that the pole Pxbelongs to 1 /Uj (A) and the pole P2 to 1 jLx (A). With regard 
to the branch-points of (80) the matter is of course quite straightforward; the branch-points 
at +1, -\~nbelong to UfX) and those at — 1, to Zq(A).

- n

....  r .... A . ............................ ..
w  *

+ 1

•fa

Figure 9. Singularities and branch-cuts in the complex A-plane on the present method.

Having established the above results, we revert once again to the complex /?-plane. 
Referring to figure 7, the relevant singularities of 1 /Z1 (cos7 ) are the pole at P2 and the 
branch-point at B2. In distorting the path C into the path S(6), the pole at will never be 
captured, but the branch-point at B2 will be crossed when 6 is sufficiently large. If the 
present analysis be compared with that previously given for a homogeneous earth, it will 
be remarked that the singularities at P2 and B2 play much the same role as before, but that, 
in contrast, there are no longer any singularities at and This is what might have been 
expected from simple physical considerations. For a homogeneous earth, the presence of
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24 P. C. CLEMMOW ON

singularities at Px and B x,in addition to those at and corresponds to the symmetry of
the configuration; in the mixed-path problem, however, this symmetry has disappeared. 
The effect of the lack of symmetry can, indeed, be brought out more explicitly by a crude 
interpretation of the diffraction field as some sort of edge-wave emanating from the dis­
continuity at the boundary. When 6is nearly equal to the field of this edge-wave has been 
transmitted over an imperfectly conducting region of the earth’s surface, and we must 
therefore expect features corresponding to the homogeneous earth analysis of § 3T to present 
themselves; they do, in the guise of the distinctive singularities at and On the other 
hand, when 6 is nearly zero, the field of the edge-wave has been propagated over a surface 
of infinite conductivity, and consequently it is equally to be expected that the analysis should 
not be appreciably affected by any singularities.

It has been shown that the distortion of the path C to the path S{6) will, in certain 
circumstances, capture the branch-point at B2, and an appropriate branch-cut integral 
should then be included in the rigorous solution; it is, however, legitimate to neglect this 
contribution, the justification for such a procedure resting on essentially the same argument 
as that suggested in the corresponding stage of the analysis for the case of a homogeneous 
earth. On the other hand, the poles of the integrand of (84) given by cos/?+cos a =  0 must 
be considered; these poles play the same part in the analysis as they do in the simple 
diffraction problem to which the present problem reduces when — 1; since the case when 
n =  1 has been treated elsewhere by this method (Clemmow 1951) we need only note here 
that the residue of the integrand at /? =  tt—ocwould, if the pole were encircled positively, 
contribute the term

p i  At  cos (0 + a )
------ T̂-,-r =  {l-yo(sina)}ei/crcos(y+aX (88)Lx(cos oc) L x(— cos a)

It is then apparent, from an examination of the different cases, that the field in the region 
0, given by (83) and (84), may be written

J-J _  cos (0—a)_|_ gifcr cos j (89)

where

and

Hd = ' 0081* f _____ e-itocoste-Wrftf
Z 77Zj (cos a) J S(6)A (cos P)(cos A + cos a )

1

(/) (sin a)
fo r  0  <  # <  77 — a , 
fo r  77 — a < ^ < 7 7 .

(90)

(91)

The first two terms of (89) give the expected field of geometrical optics, and (90) is the 
corresponding diffraction field.

As far as we are here concerned, the solution associated with an incident plane wave 
merely serves as a link in the analytical chain, and it is not accorded an independent 
development. We need only remark that the integral equation approach, in contrast to that 
attempted by Hanson (1938), yields the answer in a compact form which is particularly 
suitable for conversion to that appropriate to a line-source. This procedure is carried out in 
the next section.
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RADIO PROPAGATION ACROSS A BOUNDARY

6. T he solution  fo r  a  lin e -source

6 1 . The general form
In the model of figure 3 we consider a line-source T  situated at (r0,60) which would, in 

free-space, propagate the cylindrical wave (3). Again we express this primary field as the 
angular spectrum of plane waves (8), and the complete field is therefore obtained on
multiplying (89) by the factor iin

r  7 °  X T___  e-i/crocos(0o-«) (92)
V(27r)

and integrating with respect to ocover a suitable path. It now proves convenient to take the 
path as §(^7i) rather than C,and the result is

i t   _____ I j p i Ar cos (d—oc) _i_ j | p i Ar cos (0+a) I e ~ iA:r0 cos (Qo-cc) f a  j    

z V (2» )J « .,)V  V .’ I V(2” )

where Wfis given by (90), the superscript p being reintroduced to distinguish the field 
associated with an incident plane wave.

The next step is to express (93) in turn as the sum of a geometrical optics term and a 
diffraction term; to which end the path of integration for cl in the second integral of (93) 
must be displaced to that of steepest descents, S(0O). This procedure is natural from con­
siderations of symmetry, and is identical with that demonstrated elsewhere (Clemmow 
1950 c) for the simpler case when n — 1.

In displacing the path we must take into account the singularities of H^d regarded as 
a function of oc. First, there are the singularities belonging to ; the poles of this
function lie outside the region between S(0) and , and hence are not captured; a branch­
point may be crossed, but again the associated branch-cut integral is permissibly neglected 
(indeed, of necessity, to keep the approximations consistent). Secondly, the integrand of 
(90) has poles in the complex a-plane at cos oc — — cos/?; W f  therefore has poles given by this 
relation where ft assumes all values on the path S(6), and it is the contribution of their 
residues which combines with the first integral in (93) to yield the geometrical optics term 
of the solution. Indeed, the residue of

i._cos fop  cos ^  c—j/b-ncos 0n— (94)
itLx (cos oc)Lx (cos/?) (cos /?+cos a)

at the pole oc = tt— /? is
I   ___sint/?cos /̂? ei&0COS(«0+w _
in L f  — cos /?) Zq (cos sinyd1

Thus we may write (93) in the form

_L_|i — ̂ (sin/?)} ei/cr°cos^0+̂ . (95)

where

Hi

and

Hz = m + m ,

V (k ) ^ { H ^ ( k R )  + H^(kS)}
p-ii7r f

J { \tt)e-*i"//<2)(A;Æ) +A 7 ^  /?(sina) eiA5coŝ +a)da
\ / ( 2 7  T ) J s ( i

for 0<#<77 —#0, 

for tt — /90 <  ̂  <  77,

m  =  -s ’" . s s ------- COS 2a COS \  ---- e îMro cosCSo-^+r cos dytfda.
77 J(2rr) J S(0o) J S{0) Lx(cos oc) Lx(cos/r) (cosa + cos/f)

(96)

(97)

(98)

Vol. 246. A. 4
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26
The geometrical optics term (97) conforms to expectation, the two expressions involved 
being the respective fields appropriate to a perfectly conducting earth and an imperfectly 
conducting earth with a Fresnel reflexion coefficient (sin If  we introduce the notation 
of §3T, (97) appears in the more compact form

Hi -- V(i") e-“ " {W (k R )+ Hj»(kS)}+ Q  A(S, f ) ,  (99)

/0\ so for 0<^<77 — 0O9
Where (l) =  V fo r „ -0 o« S < * . (100)

It will be observed that the solution is reciprocal in the sense that it is unaltered by an 
interchange of r0, 60and r , 6.

6 2. A simplification
The essential complication of the mixed-path problem lies in the evaluation of the double 

integral (98) for Hdz\this is the diffraction field which smooths out the discontinuity in the 
geometrical optics field (99), and is obviously of major importance in the cases of practical 
interest for which /? +  <?0 is near tt.The immediate obstacle to progress is thatno  reasonable 
expression for Lx(cos oc)is available. We can, however, introduce an initial simplification by 
adopting the powerful arguments associated with the method of integration by steepest 
descents, and shall shortly see how this resolves the difficulty.

The predominant values of oc and ft in (98) are /?0and respectively; hence, if kr and 
are large it should be permissible to put oc =  60, ft =  in those parts of the integrand of (98) 
which are ‘ slowly varying ’ in the neighbourhood of these values. As far as the author is 
aware a rigorous mathematical treatment of this process applied to a double integral has yet 
to be given, but the required extension of the standard justification in the case of a single

P. C. CLEMMOW ON

integral appears sufficiently straightforward to warrant no hesitation in its use.
In preparation for this procedure we write

Ux(cos oc) Ll(cosa) =  Uficosoc) Z2(cosa) sin-|(a +  a£) cos-|(a— (101)

where, from (19), Uficosoc) Z2(cosa) =  —2 / / '(sina). (102)

Now the pole P1 is given by sin^(a +  aB) =  0 and the pole by c o s |(a — =  0 (see
figure 7); hence the single equation (101) implies the pair of equations

Ux(cos oc) — U2(cos oc) sin (̂oc A -ocB), (103)

Lficosoc) =  L 2 ( coscc) cos (104)

Furthermore, the only singularities of (102) are the branch-points at cos and
cos oc = —n, the former belonging to l / t /2(cosa) and the latter to l /Z 2(cos ; thus, both  
l/U2(cos oc) and l /Z 2(cos oc)are ‘ slow ly varying ’ for values o f near 0 or

It is therefore reasonable to suppose that an adequate approxim ation to (98) is

lid __ e*lg_________I______
z tt J (2tt)Z,2(cos 60) L2(cos 6)

x s s -----  JJ----------  COS gg COS 2 / ----------  --------
JS0o)JsmCOSl ( a — c o s f ( p —aB) (co sa +  cos/?) r

(105)
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r a d io  p r o p a g a t io n  a c r o s s  a  b o u n d a r y 27

This is conveniently written in the form

where 
—•

Hj =

se c |(a  +  #0J 5 (0 ) J  S ( 0 )

eiin _______1
477 7 (277) Z2(cos cos

— aB) sec |(/?+ sec

( tf f  +  t f f ) ,  (106)

— — 6) e~ik(rocos a+r cos$

(107)

H f s I* seci(a -h^0- a fi)seci(y?+ ^-afi)sec|(a+y?+/?o+^)e"i&(roCOsa+rcos#)dad̂
Js(0)Js(0) (108)

The main task of the next section is to express the double integrals (107) and (108) in 
terms of single integrals which are suitable for computation. But even when this is achieved, 
the solution still requires, as (106) shows, the evaluation of

Z2(cos#0) Z2(cosl). (109)

For general values of 6 and 60this would be a tedious process. However, if # +  #0 =  77, (109) 

becomes Z2(cos#0) Z2( —cos#0) =  (HO)

which is easily calculated from (102). The condition caters for our chief interest,
which is in the ground-to-ground field when the transmitter and receiver are on opposite 
sides of the boundary; moreover, it allows us to check the validity of the height-gain analysis 
in the mixed-path problem, which may therefore be used to some extent to derive the field 
for an elevated transmitter and receiver.

7. T he reduction of the solution 

7 1 . The reduction of Hdf  when =0, =77
The discontinuity in the diffraction field across (figure 4) arises from the expression 

Hd2 whose reduction we consider first. We start by treating the case for which is just less 
than 77 and 6 just greater than 0, so that the transmitter is situated over the imperfectly 
conducting ground and the receiver over the perfect conductor; since the answer is strictly 
reciprocal the results are immediately applicable to the case = 0 , =77. It may therefore
be assumed that | 6 — aB| is small; consequently in (108) the poles of the integrand given by 
cos \ f - \ -d  — af) 0 are not near the predominant value /? =  0. Thus, it is permissible to
write

Hd2 — sec \(0 —as)I s e c ^ (a + # 0— ^b)se c |(a + /? 'T #0 +  #) e~i/c(rocosa+rcos^dad/?. ( I l l )
J  S ( 0 ) j  S ( 0 )

In ( 111) make the steepest descents substitutions

£ =  ,/2 e~ii7Tsin |a ,  rj = J2 e -ii7r sin |/?, (112) 

and neglect, where appropriate, £2, t/2, £7, and higher-order terms in £ and This gives

A fx—ikR iJJdZ _ _____________ ___________________
cos aB) sin \(#0 — aB)sin |(#+  60)

l*oo t*œ g —k(ro §2+n/2)

X J -00 J -00 (5 -  7 2  e~iiw cot \ ( 0Q--  a B ) } { [ T  - 7 2  e"*iw cot| +  0O) } d ^ ’ ^ 1
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28 P. C. CLEMMOW ON

where Rx = r0 +  r. Next, make the polar substitutions

£ =  V W ro) cos& (114)

Hdz2 =  ^ J J J R J  e~ikRlsec^(d — ocB)cosec |r(#0 — a£) c o s e c |(#  +  #0)J e d/h (115)

/2r0)

Then

where J(/?) = J  j/> cos ̂  — e cot |(# 0 “'By

X cos sin — e il7r ̂ Zl__ol cot lr(/9 +  #0)) d^. (Hb)
*1

T(/>) can be evaluated by a standard technique, using the substitution z — exp (i^). This 
substitution gives

J ( p ) = - i \  TZi.Y / ^ T

where a — e—ii.Tr

/02 J unit (z2-2az/y0 +  l) -  25z//? +  C ) '
circle

/( ^ j CotU 0O -a£)>

A =  J J / R J - i J J J R J ,

B  =  e - l i n Æ p )}COt£(fl +  fl0).

The poles of the integrand of (117) are

z, =  {a +  iV(z)2- « 2)}//0, Z2 =  {a —i ■ J(P 2 ^ a '2)}IP >

B2

(117)

(118)

(119)

and (12°:i  / q  «
> V yiV (^C )

Since z1z2 =  1 and | Z1Z2 | -----1, one and only one of each of the pairs (119) and (120) lies within 
the unit circle. If J{p2 — a2) and J{p2 — B2/(AC)}are defined as those branches with positive 
real parts, it is not difficult to show (when p is real) that the poles within the unit circle are
z1,Z 1 for # +  #0< tt, and zl5 Z2 for 6-\-60> tt. N ow write

if  (—4 |— h —h — |— -\— dz,  (121)J unit ‘2| Z — Z 2 Z — Zj Z —Z 2/ 
circle

, rz . for^ +  ̂ 0< 7T, (122)
so that J { p ) = \

[2tt(P1-\-P2) for # +  #0>7r. (123)

The following results can be obtained:

P i = - i J ( R J r 0) / { J ( p 2- a 2) [ J ( p 2 -  a2) + a j [ r l r 0) ^ B  (124)

Pi = i M M W - S 2) [V(/-2- S 2) + « VWAo) -SV(>-/ro)]}, (125)

P2 =  i J(Rilr0)IU(p2- B 2) U(p2- B 2) - a J i R M  +BJ(rjr0)]}. (126)
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RADIO p r o p a g a t io n  a c r o s s  a  b o u n d a r y

Hence, from (122) and (123), we have

J{p)  =  2™ J y o f  - S 2 ) ~ ‘ [ • / ( / ’2 -  ±  ^  B j ' -

with the upper sign for d + 60< 7iand the lower sign for 
From (115), therefore,

where

I

H f  =  87rie-i0 ls e c |(^ -a B) cosec |(tf0- a B) cosec +

p t -kRip2 dp  p e - M ^ d p

(128)

w -*2){v(/>2-s2) ±aJv0TBJv}f ^ 2-«2> {v(/-«2)+Vr0- s7 j
(129)

with the upper sign for d-\-0o<7iand the lower sign for In the first and second
integrals of (129) make the respective substitutions

l  =  J ( p 2- B 2),a =V(/>2~ « 2); (13°)

then J __ e-MiS2 r**lA2dA *-kR\a2a oo e_/fci?lA2 dA

jJ  + aJk BJRrl
(131

®  / -1 ±ib V r0 V r0
with the upper sign for # +  <C ttand the lower sign for The individual integrals
in (131) have the unpleasant feature that they diverge if — =  0, but itself does not, as
the following analysis shows. Consider the transformation

e oo f̂ —kRyX2f=o
e ____  A) =  e-kRi(*2+fi2)E_

1 ia A + /?  J iV(a2+/?2)
The second term on the right-hand side of (132) is finite at a =  f t  =  0; the first term is not, 
but it depends on ocand y# only via the combination a 2 + y t f 2 .  Applying the transformation 
(132) to each expression in (131) the two contributions which diverge for =  — 0 cancel
out, and so

e -kRiX2 dA

s’oo e-A:BiA2
e—A*1«2| h _ - d A  =  e - ^ 2̂ 2) I d A - ^ e " ^ 2 n ^ d A .  (132)

A+/> J iV (a 2+B2) A J ia  A p

7 =  T ( a l y —B J J-j e-^is2

±i£
A2- /

( *o

a / —1 — 
. V r0

>R
V

a I - - B  /—j f '
-kRiX2 dA

J i a A2 — I a I - —B/jS,V
(133)

with the upper sign for # +  #0<7r and the lower sign for 6-\-60> tt.
Hfis given by (128) and (133) in essentially the reduced form which we have been 

seeking.

7*2. The reduction of H f  when
An expression for H f  in terms o iH f  is easily obtained. From (107), using the approxima­

tion corresponding to (111) and substituting —/? for /?, we have

H f = sec ^(0— ocB)s j sec !(a +  #0— ^b)sec ^(a+/?+#0— 6)e_iA:(rocosa+rcoŝ dad/6>. (134)
vs(0)Js(0)
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30 P. C. CLEMMOW ON

A  com parison o f (134) with (111) shows that

cos i (g -a B) H f(r0, r, 6) =  cos h(0+as) H?(r0,r, 0O, - 6). (135)

T he interpretation o f (135) requires a little care; for is represented by
different functions in the two cases 6 Q-\-6 < . t t ,  whereas is continuous for all 
values o f 6Qand 6betw een 0 and it.Since (135) holds i f  — ) is
obtained by substituting — 6 for 6 in  the expression for /Z ip  (r0, 6) appropriate to the
condition 6 Q-\-6 < tt(upper sign in  equation (133)).

7*3* 1 he case0 77, *t TT
The case when the receiver is on the same side of the boundary as the transmitter is very 

quickly dealt with. For points well away from the lines and it is
permissible, to the required order of approximation, to put a =  /? =  0 in the factors 
sec§(<%—/?+#0 — 6)and sec §(a+/?+#0 +  #) in the respective integrands of (107) and (108). 
The procedure is comparable with that in ordinary diffraction theory 1) which leads 
to the edge-wave approximation for the diffraction field, and which, for a primary line- 
source, is valid in a region outside two hyperbolas whose axes are +  =  and 6 — 60 = tt
(Clemmow 1950 c). It gives

H f + H f  =  ^ + ^ f / S(0 J s(0)sec«̂ “ ■+'9o-- *ec !(/?+'9- * , )  «.»,daclA.
(136)

The double integral in (136) could be reduced to a single integral by the method of §7-1, 
but the factor preceding it is so small in practice (vanishing for or 6 equal to that the 
whole expression may be neglected. In other words, for positions of the receiver between 
the transmitter and the boundary, only the geometrical optics term contributes effectively 
to the field, which is therefore virtually the same as that pertaining to a homogeneous 
earth.*

7*4 . Continuity of the field across 6-\-d0 = tt

No attempt will be made to get numerical results for arbitrary elevations of the trans­
mitter and receiver directly from the formulae given above, and in the next section we 
proceed to a discussion of the ground-to-ground field. It is, however, desirable to check that, 
in the general case, the solution is continuous across =  particularly in view of the
fact that the subsequent analysis centres on an examination of the field at points on this line.

The discontinuity in the geometrical optics term (99), found by subtracting its value at 
0 + 0o =  n —e from that at 0+0o =  rr + e,where e->0, is

17T"b
//f = A  ((137)

—I Tt—

It is not difficult to show that (137) is balanced by the discontinuity in the diffraction term. 
This latter arises solely from the first expression on the right-hand side of (133); in fact, using 
(118) and noting that B — 0 on 0 + ----- tt,

I 2 J  2 e~iin cot |(# 0 — otB
e - kRiA?

d A .0 ~ * y , o A2 +  2 i c o t 2 i ( 0 o - a B)
Feinberg (1946) gives a second-order correction term in this case for the ground-to-ground field

(138)
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The integral in (138) can be expressed (exactly) in terms of the complex Fresnel integral 
(20) (Ott 1943; Clemmow 195s); we have

RADIO PROPAGATION ACROSS A BOUNDARY 31

/ 2 J tt e~ii7TF { J ( 2kRl) co t|(0o- a fi)},

and this can be legitimately replaced by
77 +

2jire  il7Tsin ~aj?) F{ cos \(0O afi)}

(139)

(140)

to the order of approximation to which we are working. The corresponding discontinuity 
in Hd is now obtained from (106), (128) and (140). It is

m
2V2i ±—ikS F{J[2kS) sin +  aB)}T_ cos^(0 —as) Z,2( —cos/9) L2(cos/9)

= — /\(S,6), using (102) and (21). (141)
We remark that the necessity here for replacing (139) by (140) only arises because, owing 
to the greater complexity of the analysis, our method of approximation in the mixed-path 
problem has been slightly less refined than that adopted in the case of a homogeneous earth.

8. T ransmitter and receiver  on the  ea rth ’s surface 

8 T . The general expression
The analysis of §7 is now applied to a discussion of the ground-to-ground field.
We consider first the case in which the transmitter and receiver are on opposite sides of

the boundary. Then 

and, from (118)

0 =  0, 0O =  7T,

a =  e~ii7rN/(2r0/</)tan|ai 0.

(142]

(143]
In view of the remarks concerning the interpretation of (135), it is convenient to use the 

formulae appropriate to 0 +  0o =  tt—e (e->0), so that = Hdz2. The geometrical optics
term is thus

z J{kd) '

and the diffraction term, from (106), (128), (133) and (102), is

Hi =  —4 n/(2/tt) e-ii7rtan

f±-kd\2
where

(144)

(145)

/  =  — J2e tan

(2f
510 A2 +  2i tan2 d/t

+  e'-ii7T
-kdX2

. ta n  A0Ct> p2i/crotan2 \ocB I
d) JeilV(2r0/cOtaniaBA2 + 2i(r///) tan2 dA. (146)

Now the first term in I is minus a half of (138) with =  From (141), therefore, the 
corresponding term in Hd is A(d, 0). Hence the complete field is given by

O p —ikd
H, =  —rsnr +A(d, 0) +HSZ, (147)J{kd)

where
g  e i i 77 /*00 p - iA 2

- j ^ A k r )  (148)
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32 P. C. CLEMMOW ON

The first two terms of (147) represent the field which would exist for a homogeneous earth, 
that is to say, in the absence of the conducting sheet; the scattered field generated by 
currents induced in this sheet is therefore given by as the notation implies. Formulae 
(147) and (148) are applicable when the transmitter and receiver are on opposite sides of 
the boundary; if they are both on the same side of tfflb boundary the diffraction field is to be 
neglected altogether (as shown in §7-3).

At this stage it is convenient to introduce the parameters
ro =  V (P ^ s in a s> (149)

7o< =  V (P ro) sinaB- (15°)
The former appeared previously in the analysis for a homogeneous earth (equation (23)), 
—i ylbeing the ‘ numerical distance ’ of the receiver from the transmitter; correspondingly, 
—iyltis the 6 numerical distance ’ of the transmitter from the boundary. As might have been 

anticipated, the quantities (149) and (150) turn out to be the natural ones in which to 
express the present results; they may replace, respectively, the essentially equivalent forms 
J {2kd)tan (faB) and J(2kr0)tan ( p s) which are explicit in (148), the slight discrepancy 
being due to the method of approximation.

For the sake of brevity we also write
K{a) — 1 —2i (151)

f*co p — i A 2
as in (24), and G(a,b) =  beio2J ^g-ppdA. (152)

Now let A be the factor by which the free-space field must be multiplied to give the field 
in the presence of the earth. Then our results for the ground-to-ground field, when the 
transmitter is situated over medium 1 , may be stated thus:

for points on the same side of the boundary as the transmitter (cf. (24))
J  =  2K(7o); (153)

for points on the opposite side of the boundary to the transmitter
4  p i i ? r

A  —  2-K(y0) +  7o (̂7o/> (7o ~~7o<)}- (154)

The formulae (153) and (154) can be assumed to be independent of the nature of the 
(vertically polarized) transmitter. The whole analysis could certainly have been carried 
through for a line-source with a polar diagram other than circular, and the same results 
obtained. But more important is the contention that (153) and (154) are also applicable to 
a point-source, giving the field variation in any direction which is not too oblique to the 
boundary, provided all distances are measured along the appropriate radius from the source. 
The belief that this is so is based on an examination of the known solutions for a dipole 
transmitter in the simpler, allied problems of propagation over a homogeneous earth (§ 3 ) 
and diffraction by a perfectly conducting half-plane (Senior 1 9 5 3 ); and is supported by 
Feinberg’s (1 9 4 6 ) analysis.

8 *2 . A special case
The significance of (154) is most readily appreciated by considering the conditions under 

which some simplification is possible.
It can be shown (Clemmow 1 9 3 0 -) that it is permissible to put A equal to its lower limit 

value, namely, yœ, in the non-exponential factor of the integrand provided that | y0| |>L In
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33r a d io  p r o p a g a t io n  a c r o s s  a  b o u n d a r y

the case, then, for which the receiver is a large ‘numerical distance’ from the transmitter 
(relative to medium 1), (154) becomes

A 2 i
kd sin2

4 eii7r 
JlT

(155)

From an inspection of (155) we can follow qualitatively what happens as the receiver
starts at the boundary and proceeds away from the transmitter and off to infinity over the
perfectly conducting sheet. When J(r/d)is sufficiently small, the first term, which represents
the field in the absence of the conducting sheet, predominates; in fact, (153) and (154) give
a smooth transition across r — 0, although the asymptotic approximations on which § 7 is
based can only be expected to apply at distances of greater than half a wave-length, say,
from the boundary. But since the first term is itself small, the second term very soon takes
over, and consequently there is a rapid increase of field-strength with distance in the region
just beyond the boundary, a recovery effect. Finally, when J{rjd) 4=1, (155) becomes
effectively 4 eii7T xA = - j - F ( y ot); (156)

V "
in this last case, therefore, the field is equivalent to that of a transmitter in the presence of an 
infinite perfectly conducting sheet whose power and phase are modified in accordance with
(156); a result which confirms the obvious supposition (P. P. Eckersley 1 9 3 0 ; Millington 
1 9 4 9  b)that at points sufficiently remote from the boundary the rate of attenuation must be 
characteristic of the relevant medium.

We are assuming | y0 | $>> 1 ; hence, when hr is relatively small | yot | must be large, but as 
krincreases this is no longer necessary and so (156) is applicable for virtually all values of 

yto; in particular, it may be noted that (156) reduces to =  2 when =  0, implying, as 
would be expected, that the field is unaffected by the imperfectly conducting medium when 
the transmitter is sufficiently close to the boundary (though, again, the results cannot be 
granted quantitative recognition unless kr̂ > 1).

8-3. A numerical example
In illustration of the foregoing remarks we take a simple numerical example which has 

been considered briefly elsewhere (Clemmow 1 9 5 0  a). The most interesting effect to demon­
strate is the field-strength recovery, and to emphasize this feature we choose medium 1 to 
be a pure dielectric with sinog =  |  (corresponding to a dielectric constant of 8 ), although 
the conditions of the problem are then such as would scarcely be met in practice. If we 
assume that r0 =  300A (where A is the wave-length), y0<, from (150), is just greater than 1 0 , 
a value certainly large enough to allow the Fresnel integral in (155) to be replaced by the 
first term of its asymptotic expansion. The complete field is thus given by

^  =  for d < r -  <157>

A ~  ~kds i n V , f i d ) sinaB for d>r°’ ' 158'

with the reservation that these expressions are not applicable for points inside a region about 
a wave-length in width centred on d  — r0.

V ol. 246. A. 5
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34 P. C. CLEMMOW ON

Figures 1 0  and 1 1  show, respectively, plots of field-strength and phase against using
(157) and (158) in conjunction with the values of sin and r0 given above. The graphs are 
appropriate to a point-source, and the corresponding curves relating to a homogeneous 
pure dielectric earth with sin ccB — and a perfectly conducting earth are also given.

distance (wave-lengths)

Figure 10. Field-strength (in decibels above an arbitrary level) against distance (in wave-lengths) 
from the transmitter [a)for a homogeneous, perfectly conducting earth for a homogeneous,
pure dielectric earth (sin <xB = -|), (c) for pure dielectric earth (sin — )̂ up to 300 wave­
lengths from the transmitter and perfectly conducting earth beyond, by the present method, 

(d)for the conditions as in (c), by Millington’s method.

distance (wave-lengths)
Figure 1 1 . Phase (in degrees, relative to that of the free-space field) against distance (in wave­

lengths) from the transmitter (a)for a homogeneous, perfectly conducting earth, for a homo­
geneous, pure dielectric earth (sin <xB= A), (c) for pure dielectric earth (sin — A) up to 300 
wave-lengths from the transmitter and perfectly conducting earth beyond.
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Referring to figure 1 0 , we see that the initial recovery of field-strength is extremely rapid; 
when r =  A it is 3 - 4  dh above the value at the boundary, and this figure rises to a local 
maximum of 13-7 db when r =  130/1. The mixed-path curve obtained by Millington’s 
method (shown dashed in the figure) lies remarkably close to that given by (158); the details 
of this agreement are examined in § 1 0 .

The phase plotted in figure 1 1  is that relative to the phase of the transmitter in free-space; 
here again there is a rapid climb just beyond the boundary, which means that the phase 
velocity in this region greatly exceeds that of free-space propagation; it is also interesting 
to note that the final asymptotic value of the curve, — $tt, lies half-way between that 
appropriate to a perfectly conducting earth (namely, 0 ) and that appropriate to a homo­
geneous pure dielectric earth (namely, — ̂ tt).

9. E levated transmitter and receiver  

9 -1. The application of ray theory
In the case of a homogeneous earth a particularly simple result with an obvious physical 

appeal is that of ray theory, given by (26). From the nature of this formula one might at 
first sight be tempted to infer, with respect to the mixed-path problem, that geometrical 
optics would be adequate in those regions governed by ray theory not in the immediate 
vicinity of 01 (figure 4 ); but this is by no means entirely the case in the sense in which we 
have used these terms. Referring to the inequality (27) we note the perhaps rather surprising 
fact that the validity of (26) depends only on the combined heights of the transmitter and 
receiver, and not on the angle of elevation in consequence, ray theory may easily have 
practical application in ground-wave communication, and furthermore, as stressed in §3, 
may sometimes be linked with the height-gain function. On the other hand, it is well known 
that geometrical optics can only give a reasonable approximation at large angles of diffrac­
tion, and generally speaking these fall outside the limits of interest in the propagation 
problem.

For a perfectly conducting earth, the exact result is given by ray theory with a reflexion 
coefficient of + 1 . It is therefore reasonable to suppose that there will be some approximation 
in the mixed-path analysis which is valid when the inequality (27) is satisfied, although, 
from what has just been said, the complications associated with diffraction must still be 
expected to remain. The approximation is not hard to find; it consists of putting a — 

ft — 6 in the factor {Lfcos a) Lfcos/ ? ) } - 1  in the integrand of (98). This procedure is mathe­
matically analogous to putting a =  0  in the function //{sin (p-oc)} in the integrand of (17), 
which was seen to lead to (26) in the case of a homogeneous earth; it defines our use of the 
term ‘ray theory’ in the present context.

Making the above-mentioned approximation, the diffraction field becomes
m = _ ^ l _________1_______s f cosj(« + <?0) COS e-l«„cos«trcos<M„d/? n so)

z 7T 7(2 ff) 7, (cos ('„) 7. 1 (cos 8) J S(0) J S(0) cos (a + S„j + cos I f i r C )
If medium 1 were free-space (n = l), Lxwould be unity, from (80), and the solution of the 
problem is known. Referring to some results given elsewhere (Glemmow 1 9 5 0 c), it can 
therefore be deduced immediately that

7(2/-,) e»» (F[7{7(g , - m  . -S)}]) d 60\
‘ ■ 7,(cos0o)7,(cos0)l 7 « « 1  +  *)} 7{*(K, +  S)} I

RADIO p r o p a g a t io n  a c r o s s  a  b o u n d a r y

5-2
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36 P. C. CLEMMOW ON

with the upper sign for 6 6 q<Lttand the lower sign for The corresponding
geometrical optics term is, of course,

~ - i k R  Q - i k S

7 W ) + 7 W >
, - i  k R - i  k S

W ) + p [A n i)l W )

for 0- \ ~ d ) 

for 6-\-6 q>
(161)

Again, it is easy to check that the total field is continuous across # +  0o =  for on this line 
(160) clearly reduces to

}jd_ (j — nfsin#))!— /-  eii7r ) 1    — ) e- i^  (162)

with the upper sign for d-\-60 =  tt — eand the lower sign for 6 6 0 =  +e, where e^O ; and
the discontinuities in (161) and (162) are indeed seen to counterbalance one another.

Formula (160) emphasizes the diffraction nature of the problem. The factor contained 
in the curly bracket is readily computed, being expressed in terms of Fresnel integrals whose 
arguments are real, but the necessity for evaluating still presents a stumbling block, as in 
the general case. We have seen that the difficulty is avoided if we accept the condition 
6 -f- 0q — 77, and by this means we shall be able to link the field of ray theory with the ground- 
to-ground field via the height-gain function. But before proceeding to a discussion on these 
lines in §9-2, a further possible simplification is worth mentioning.

It was pointed out in §4 that ray theory can sometimes be used in conjunction with an 
effective reflexion coefficient of — 1 ; that is to say, the reflexion coefficient is virtually inde­
pendent of the angle of incidence over the range of angles involved. This suggests that, under 
suitable conditions, the factor (Z1 (cos 60)Z^cos # ) } - 1  in (160) might be assumed independent 
of 60and 6 and given the value 2 , as indicated by (80). It is interesting to note that this would 
lead to precisely the same result as the rigorous solution to the problem of two line-sources 
at T  and T' in the presence of the perfectly conducting sheet but in otherwise free-space, the 
source at Z being associated with the primary wave (3), and that at T ' with the primary wave

Hz = - J lm * H ® ( k S ) .  (163)

It is, indeed, reasonable to suppose that, in  the particular circum stances now  assum ed, this 
m odel w ill furnish a good approxim ation to the solution o f the m ixed-path  problem  in the  
appropriate region above y =  0 ; for it gives a continuous field w hich is closely that per­
taining to a hom ogeneous earth o f m edium  1 for points on the sam e side o f the diffracting  
edge as the transmitter, and w hich satisfies the boundary condition on the perfectly con ­
ducting sheet. A n  extension to this point o f v iew  is m entioned in § 18.

9 2 . Height-gain considerations
It is natural to suppose that the use of a height-gain function is valid under certain con­

ditions in the mixed-path problem. A numerical example now to be given shows that this is 
indeed the case, the procedure being to link the ground-to-ground field with that of ray 
theory. An overall check on the analysis is thus obtained which is particularly reassuring in 
view of the fact that no simple mathematical relation between (147) and (160), (161) 
appears on the surface.
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To make the calculation feasible we must maintain the condition # +  # 0 == ^  this is no 
real restriction, for it simply means that height variations must apply to both the transmitter 
and the receiver, which is in any case necessary in order to introduce the height-gain 
function in a form explicitly related to the two media in question. Our object is most
conveniently achieved by taking x — x0, y — y0 =  h.

Let us first apply the idea to a homogeneous earth. As in the example of § 8 -3 , we consider 
a pure dielectric earth with sinog — ^ and take d — 600A. The inequalities (27) and (32) 
indicate that both ray theory and the height-gain function should be applicable for h = 2 A.

r a d io  p r o p a g a t io n  a c r o s s  a  b o u n d a r y

rQT3
£
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v

2
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x

x
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0 2 4 6
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x

I I I I I I I I
0 2 4 6 8

height (wave-lengths) height (wave-lengths)

Figure 12. Field-strength (in decibels above 
an arbitrary level) against the common 
height (in wave-lengths) of transmitter and 
receiver situated 600 wave-lengths apart 
over a homogeneous, pure dielectric earth 
(sin aB = -|). Full-line curve deduced from 
ray theory; crosses deduced from the height- 
gain function, using the field-strength given 
by ray theory at the height of 2 wave­
lengths as a starting point.

Figure 13. Field-strength (in decibels above 
an arbitrary level) against the common 
height (in wave-lengths) of transmitter and 
receiver, situated respectively over a pure 
dielectric earth (sin o — ^) and a perfectly 
conducting earth, each being 300 wave­
lengths from the boundary. Full-line curve 
deduced from ray theory; crosses deduced 
from the height-gain function, using the field- 
strength given by ray theory at the height of 
2 wave-lengths as a starting point.

The situation is depicted in figure 1 2 , where the field-strength is plotted against the
full-line curve is that given by formula (26), and the crosses represent points deduced from
(34) starting from that on the full-line curve corresponding to 2 A. The field-strength at
h = 0 derived in this way is in agreement with that given by (25).

Similar results for the mixed-path problem are shown in figure 13. The height-gain
factor is now ,, „,.1 + 1 kn aB, (164)
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the contribution from the perfect conductor being unity. The full-line curve is computed 
from the ray-theory formula for the case 6-\-d0 = tt, which, from (161) and (162), may be

written A --1 +  ( i[ l +/>(sinff)] - ™ [ I  —/?(sin / ^ ( S - Æ ) } ] }  (166)

The crosses represent points deduced from (164), starting from that on the full-line curve 
corresponding to h =  2 A. Good agreement is obtained over the expected range of heights, 
and the field-strength at h = 0  derived in this way agrees with that obtained directly from
(158) to within OT db.

10. A  COMPARISON WITH MILLINGTON’S METHOD

In the example of §8 - 3  it appeared that the ground-to-ground field-strength curve given 
by M illin g to n ’s method lay remarkably close to that obtained from the analysis of the 
present paper. This is rather surprising in view of the fact that Millington’s procedure has 
no ab initio theoretical justification in the case under consideration, and it is therefore of 
interest to examine the reasons for its success in more detail. For the purpose of comparison, 
it is convenient to express the idea behind the graphical manipulation of the attenuation 
curves (Millington 1 9 4 9  b)analytically in terms of the complete ground-to-ground field; 
the formal extension is immediate, and, applied to two media (the transmitter and receiver 
being on opposite sides of the boundary), gives the field

4  (166)
where Hlz and H2z refer to homogeneous earths of media 1 and 2  respectively. When 
medium 2  has infinite conductivity, (166) is equivalent to

T =  N/{2Ti(r0) Ti(tif)/Ti(r)}, (167)
where A is the factor by which the free-space field must be multiplied to give the actual field, 
A x referring to a homogeneous earth of medium 1 . We may remind ourselves that (0 ) — 2 .

To facilitate the comparison between (167) and (164), we suppose that | y0 |^>1 , as in 
§8 -2 . Using (24) and (25), formula (167) then reads

<168>
We consider two limiting cases:

( a) r represents a small ‘numerical distance’ relative to medium 1 , so that | | 1 and
J(r/r0) < 1̂ . A little reduction shows that (168) is now approximately

(169)

whereas the analogous expression from (158) is
i / . 2  eii7r

(17°)
(b) r represents a large6 numerical distance' relative to medium 1 . Then (168) simplifies to

2 J[~ d K ^ } ’ (171>

38 P. C. CLEMMOW ON

and (155) to (172)
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It is clear from these formulae that the success of Millington’s method in the present 
instance arises from the approximate numerical equality of certain functions which are 
mathematically quite distinct. For (169) initiates a recovery of field-strength just beyond 
the boundary only slightly less violent in degree than that determined by (170). Likewise,
the relations - , .

K ^ y u )  = 1 -1 7 7 7 6 ^ /0 , for \ y o t \ < l ,  (m )

~ e~ ii77Cs/27ot )  for |y j l > l ,  (174)

and * 1 — 7=e“ ’ 7 o< for I ro iN l. (175)

-e-^IUnyot)(176)

indicate that (171) and (172) are in close agreement for all values ofy0<; in particular, (174) 
and (176) differ only by a factor J  ( Jtt) ,and consequently, in the example of § 8-3, Millington’s 
curve lies merely about 2  db above our own for all points beyond a certain distance from the 
boundary, as figure 1 0  shows.

Since Millington’s method receives its severest test (for an earth of two media) when 
applied to the model of figure 3 , we expect that it will prove even more efficacious in the case 
of two finitely conducting media, a contention which is borne out in part II of this paper; 
and furthermore, our confidence is strengthened in the likelihood of it producing satisfactory 
results in more general problems, involving several different media and the curvature of the 
earth’s surface, to which it is so readily adaptable.

RADIO PROPAGATION ACROSS A BOUNDARY

PART II. TWO ARBITRARY MEDIA

1 1 .  T h e  i d e a l i z e d  p r o b l e m  :  a p p r o x i m a t e  b o u n d a r y  c o n d i t i o n s

In this second part of the paper we treat a generalization of the mixed-path problem 
already considered, in that the assumption of perfect conductivity for one of the media is 
waived. This extends the range of application of the theory, and enables a comparison to be 
made with the one controlled experiment carried out at sufficiently short distances for the 
earth to be considered fiat.

fr e e -sp ace  ^

T x
x  0

Figure 14. A possible model.

The idealized (two-dimensional) model that might be chosen is illustrated in figure 14. 
With the co-ordinate system as before (figure 5), the earth occupies the region 0 , and 
now consists of two homogeneous parts, medium 1 inx < 0  and medium 2 in x > 0 . However, 
the introduction in this configuration, or any like it, of a second surface of discontinuity (that 
between medium 1 and medium 2 ) appears to put the exact solution of the problem beyond 
the reach of any mathematical technique as yet available; indeed, diffraction by a finitely 
conducting wedge has not so far been treated rigorously. We therefore turn to a formulation
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40 P. C. CLEMMOW ON

in terms o f an approxim ate boundary condition w hich is likely to be valid  for m edia, the  
m odulus o f whose (com plex) dielectric constant is large, this criterion being adequately  m et 
by m ost types o f ground. T he boundary condition has been extensively used in  recent years; 
for exam ple, the work o f Grunberg & Feinberg, previously m entioned, is based on its 
adoption. For our present purpose it m ay be stated in the follow ing form

E x = Z  sin ccBH zat 0 , (177)

where ocBis the Brewster angle of the ground at the point in question, and | sin | <<: 1 . For 
‘ glancing incidence' (177) is slightly more accurate than the standard form Ex = tan

W e give an exact solution o f the problem  illustrated in  figure 14 in conjunction w ith  the  
boundary condition (177). T h at is to say, at y = 0

E x = Z  sin ocm Hzfor #<  0 , (178)

E x = Zsin ocB2 H zfor (179)

where ocBl,ccB2 are the Brewster angles o f m edium  1 and m edium  2 respectively. T h e  problem  
becom es tractable in  this form because only the field in  >  0 is involved , and the interface  
betw een the two earth m edia plays no part. T h e solution is effected by precisely the sam e  
type o f analysis as that used in  part I.

An implication of (177) is that the field in z/ <  0  in the vicinity of the point in question is 
that of a plane wave travelling vertically downwards. The condition (177) may therefore 
be expected to be accurate except in some region close to the line of discontinuity at 0. It 
might be hoped that this in turn would imply the accuracy of the corresponding solution at 
all points further than a fraction of a wave-length from ; and since it is only at such points 
that the solution can be reduced to a workable form, the limitation would be relatively 
unimportant. On the other hand, the degree of inaccuracy involved cannot be assessed 
quantitatively, and it is therefore reassuring to find that when sin =  0  (medium 2  

a perfect conductor) the results are essentially in agreement with those obtained by the 
more rigorous treatment of part I.

In concluding this introductory section it is worth noting the slight changes that are 
introduced in the familiar parts of the succeeding analysis by virtue of adopting boundary 
conditions of the type (177). These are made clear by seeing how the analysis for a homo­
geneous earth is affected. It is apparent that the alteration in the treatment of § 3  is the 
replacement of the exact expression (6 ) for the reflexion coefficient by the approximate form

/? (sin
sin oc — sin 
sin oc +  sin * ( 180)

Thus, no branch-points appear in the integrand corresponding to (9 ), but this is not 
significant since the resulting branch-cut integral was in any case neglected in arriving at 
(1 2 ). The further approximations that are made between (1 2 ) and the final result (2 2 ) are 
such that there is no essential distinction between the use of (180) rather than (6 ); indeed, 
we remark that the precise condition (177) is implicit in the second height-gain factor of (31).

T he pattern now  follows closely that o f part I. In  §12 an incident plane w ave is con ­
sidered, the form ulation given in terms o f dual integral equations, and the solution o f  these  
obtained. T h e deduction o f the solution for a line-source follows (§13), and then the
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reduction of the double integrals to single integrals of the type (§14). In §15 the
general expression for the ground-to-ground field is set out and its properties noted in some 
special cases j a numerical example shows good agreement with an experimental result 
demonstrating the recovery effect (§16). Finally, the different approximate form of the 
solution corresponding to ray theory, valid when the transmitter and receiver are sufficiently 
elevated, is given in § 17.

RADIO PROPAGATION ACROSS A BOUNDARY

12. T he s o l u t i o n  f o r  a n  i n c i d e n t  p l a n e  w a v e

This section is devoted to the problem in which the plane wave (4) is incident on the 
interface depicted in figure 14, using the boundary conditions (178), (179). As already 
mentioned, only the region 0  is involved.

12T. The formulation in terms of dual integral equations 
The field of the incident plane wave is

I IP = (0 , 0 , 1 ) e ik r  c o s(,0(181)
j Ef =  Z(sina, -cosa , o) eiftrcoŝ “a). (182)

In order that the analysis may be paralleled with that of §51, the scattered field is taken as 
that which, to give the complete field, has to be added to that appropriate to a homogeneous 
earth of medium 1 . If the earth were homogeneous of medium 1 there would be a reflected

wave (Hr =  p^sina) (0 , 0 , 1 ) cikrœs^ +0l\  (183)
|  Er =  Z p f  sin a) (—sin a, — cos a, 0 ) elArcos(6,+a), (184)

where px(sin a) is the reflexion coefficient o f m edium  1. As indicated in § 11, in order to keep 
the approximations consistent the inexact form

yÔ sin ot) —sin a — sinaB1 

sin a +  sin (185)

must be u sed ; it will be seen shortly that this is necessary if  the strictly reciprocal form o f the 
answer is to be preserved. T he scattered field is written as an angular spectrum o f plane waves

Hsz = \T(cos/?) e-ikrcos(d-/3)(186)
J c

. Esx = -z\sin (187)
I J c

E s = z i  cos/?P(cos/?) e~i/crcos(6l~Ad/?. (188)

The total field is given by H z — H -̂\-H ,̂- (189)

The boundary conditions to be satisfied at z/ =  0  are (178) and (179). Expressed in terms 
of the scattered field these are

(I) Esx =  Z sin ocb i H szat y = 0 , * < 0 ;

(II) Esx---- Z{sin ocB2E[sz +  (sin aB2 — sin ocBl)(Zfj +  Z/̂ )} at — 0 , x > 0 .

V ol. 246. A. 6
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42 P. C. C L E M M O W  O N

Using (186) and (187), (I) and (II) lead respectively to the dual integral equations

J ” | l  +  P(X) tdA =  0  for a:<  0 , (190)

r  ( l+  r % > W  e -^ c U  -  ) e^Ao for x>0, (191)
J — I V(1 —A2)/ w  J  (I — Aq) +sm agl

where A0 =  cos a. Equations (190), (191) should be compared with (63), (64); when
sin ocB2 — 0, the only difference is that the expressions 7(1 in the integrand of (63)
and 7(1 —Xl/n2)/n on the right-hand side of (64) are replaced by sinaB1.

1 2  2 . The solution
Using the notation and technique of §5-3, equation (190) is satisfied if

and equation (191) if
1+ir=WPW = C7W’

m, | sin aB2 I p , ,. _  i 2 V ( 1 - A | )  (s in a m - s1+ V(l-A2)i^W 2,7 i ( - A 0)(A+A0) ’

(192)

(193)

where the path of integration is assumed indented above the pole at — — A0. To obtain 
P(X)explicitly from (192) and (193), clearly the major step is to express

7 (1 —A2) +  sin 
7 (1 —A2)+ sina B1

as the product of a [/-function and an Z-function. We write

(194)

2 sinqgl 7 ( 1 - A 2)+ sin o ;fl2 1
7 ( 1 - A 2) 7 ( 1 - A 2) +  5111̂ ,  Z71(A)Z,(A)’ 1 ^

the particular form being so chosen to reduce to (80) w hen sin — 0, provided that in  (80) 
7 (1  —X2/n2)/n is replaced by sin ocm: again w e note that [^(A) — T h enp/n _  i * 1 — s m a B2js m a m - 7(1+^o) 7(1+-*)

1 ; 277(1 + s in a M( l-A § ) -» } { 1 + s in a J(2( l - A 2) -* } £ 1(A()) ^ (A ) (A+A0) ’

the sym m etry in  A and A0 ensuring that the reciprocity condition is satisfied.
T he com plete field is therefore given by

where
sin

e1 krcos (0”a) +  px(sin a) cos (y+a> +  Hsz,

cos *a
s m a m /

JLvj ̂  Wo CAj j 1 SlS)Jc(1+W 2)A(COSA) (COŜ+COSa)

(197) 

dytf. (198)

12-3. A transformation of the solution

To separate the expression (197) for Hzinto the sum of a geometrical optics term and 
a diffraction term, the path of integration Cin (198) must be distorted into that of steepest 
descents, S(0).The pole at/? =  t t — oc,if captured in this process (in the positive sense), would
contribute the term

(199)
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RADIO p r o p a g a t io n  ACROSS A BOUNDARY 43

T he solution m ay therefore be written

J-J_ ei/cr cos(0-a)_|_/^2\ gikr cos (6+cc) (200)
z W

where

and

/ M  _  f ^ ( sina) for O < 0 < 7 r -a ,  ^201)
Vv \/?i (sin a) for tt ' ^ 8 > tt

sin Og2\ cos jocsin a f s in /? eo s^ e-i^ ^ (S -/b )
sin otBJ Lx (cos ot)sin ot + sin otB2J S{e) (sin/? +  sin (cos^) (cos cos a)

( 202)

13. T he s o l u t i o n  f o r  a  l i n e - s o u r c e  

131. The general form
W e now consider a line-source situated at (r0, w hich would, in free-space, radiate the 

cylindrical w ave (3). Follow ing the procedure o f § 6-1 it can be seen that the solution in this

case 18 Hz = Hi + H*,

{H^(kR)  + / /® (fc $ )} + A 2(S, f )  for 0 ^8 < -n -$ 0,
where

and

m TT J (2tj)

/ |e - t i”{H$\kR) +  H f(kS)}+ A,(S, f )  for i t> 8 > n -8 0,

)

(203)

(204)

1 _sm a 5 2

sin a

X
cos ^(a + ?0) cos \ f- \-6 )  sin (a +  sin (/?+#) e cos a + r  c o s #

J 5 (0) J 5 (0) {sin (a +  80) +  sin otB2] {sin (^+#) +  sin cos (a +
xT^cos (#+/?)} {cos (a+#0) +cos (/?+#)}

dad/?;

(205)
in (204), A1(iSl, if)and A 2(S,if are terms corresponding to (12) for m edia 1 and 2 respectively, 
where the approximate form (180) of the Fresnel reflexion coefficients is u sed ; that is

M S , f
x—i k S  cos oc

-\l7Tsinar
1 S(0) sin (a sma. da (r — 1, 2). (206)

13 2 . A simplification
As in §6 -2 , we can simplify (205) by putting — 0  in those factors of the integrand

which are ‘ slowly varying' for small values of a and 
To this end we note that (195) gives

______ 1______  =  2  sin sin a + sin
Ux(cos a) Lx(cos ot)sin a sin +  sin ’ '

and by reasoning similar to that which leads from (101) to (103), (104), it is seen that
(207) implies 1_____ 1 J(smaBl) sin^(a +  qg2)

Ux(cos a) Fx(cos ot)sin ̂ a sin^(a +  aB1) ’

1 1 ^/(sina^) cos^(a —aS2)
Lj(cosa) (cos a) cos ^q c o s |(a  —a51)

(208)

(209)
6-2
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44 P. C. C L E M M O W  O N

where Fx(cos a)and F2 (cosa) have no singularities or zeros in the finite part of the complex 
a-plane, and ^(cosa) F2(cosa) =  1 . (2 1 0 )

Substituting for cos a) from (209) into (205), it is legitimate to put a — /? — 0  in the 
factor {F2[cos (a +  #0)] ^ 2 [cos (/?+#)]}_1, and thus

Hi
*li7T smaM — sin ocB2

it J ( 2 tt)  F 2 {cos 6 q) F2{cos 6 )

sin|-(a +  #0) sin §(/?+#) cos-|(a +  #o) cos^-(^-b^) e-i/b(rocosa+rcoŝ
X

5(0) J s ( 0 ) sin  i ( a - f ^ o " h a£2) s n̂  F  0 F  Ub ?)co s |- ( a - |- # 0— ̂ Li) c o s |r ( / ? + # — a M )
x {cos (a +  #o) +  cos (/? +

By analogy with (107), (108) we write

m
liiTT sin ocBl— sin ocB2 {Hf+Hf).,

where

HdJ

4:TT J  ( 2 t t )  F2{c o s  60) c o s  6)

sin J(a +  60) sin |( /? + 0) e_i^ro cos a+r cos $
J 5(0) J 5(0) sin 2 (a +  ̂ 0  "h aB2 ) Sin +  ̂  +  0CB2)COS ^(a +  # 0 — aB1)

X cos c o s  i ( o c - f i - \ - d 0 — f l )

iTd2 _ I f _  sin |(a  +  ̂ 0) sin l(A+^) e_i/c(r°cosa+rcosA)
5<o) J 5(0) s i n ^ ( a  +  ^04 -a 52) sin +  cos |r ( a  +  #0 — a51)

X COS 2 ( ^ “f“ 6  Ægi) COS ^ ( a -j- /?d~ d" 6)

dad/?.

( 211)

( 212 )

dad/?,

(213) 

dad/?.

(214)

14. T h e  red u ctio n  of t h e  solution

In this section we show how the double integrals (213), (214) can be reduced to single 
integrals of the type encountered in part I. Explicitly we discuss only for the case 
6 = 0 , Oq ==ti.

We may write
Ijd2 _________ sin Oq_____

* sin M#o +  %>) cos i asi)
f f sin ̂ (/?+#) e_i^r°cosa+rcos/(?)
v s(0)J 5 (0) cos^(a +  # 0 a51) sin^(/?+^ +  a£2) cos- ^ (a + /? T T 6 ) dad^>* (216)

Proceeding exactly as in §7 T, (215) reduces to

Hd2 m ______________ 4 s in ^ 0 c o s ^ >/(r0/Æ1) e - i*ai_______________  f°
sin |(^ 0 - a M) s in i ( # 0 +  aB2) cos |(0 - a B1) co si ( 0  +  a£2) sin f(0 o +  0 ) J 0 e 1 d/?’

where <216>
j(„) =  P.____________________ {/9sin^+7(2r/Æ,) e -*"tanP )d (i___________________

Jo V cos^-V (2r0/« 1) e ^ l”cot|((90 - a sl)}{/,sin^+V (2 r/^1) e^X’tan l^ + c i^ )}

x |/>[./WÆi) cos^+ y(r0/Æ,) s in ^  —e-N’ ^ p h o t J ^ o + t f ) !

(217)
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r a d io  p r o p a g a t io n  a c r o ss  a  b o u n d a r y
Putting z =  exp (i^) in (217), we have (z2 T

45

J{p
4i zdz
yO2 J unit (z2-  2az/p + l) (z2 +  2 -  1) (Tz2 -  2  +  C)

circle

where a =  e_ii7r7 (2 r0//?1) cot J ( ^ 0 —aB1), A =  V(r/A )— iV(ro/A)>

s J(2r/Rl) ta n |(# + a £2), c o tj ( 0  +  0 o),

So — e~iinJ(2rlRx) tan £0 , C =  + iV (ro/^i)-

The integral (218) can be evaluated by Cauchy’s residue theorem. Thus

(218;

(219)

J(yO) =  277 i: /*i J(p2- B 2)± B J (r0lr )± b J (R llr)
r, \ J ( p 2- B 2) U ( P 2~ B 2) ± B J (r0l r ) ± i J ( R J r ) }

U(p2~B2) ±«V W /r0) =F5 V(r/r0)}

•y (^ -« 2) +  ̂ o________________ _ I
J{p2~ a 2) U ( p 2- a 2) + b } { J { p 2- a 2)+aJ(r/r-BJ{RJr„)} /

b -b
-2m A

r Vt?2 -» ')y ( /» 2 - 4 2)-« }y (i» 2 - * 2) V W O -BJifiH r] v ( 220)

where the radicals are those branches with positive real parts, and the upper sign is for 
/9 +  #0 < 7t, the lower sign for # +  #0 > 7r.

Substituting for J(/>) from (2 2 0 ) into (216) it is seen that

m 2 8  m sin \dQcos \d  e
sin^ ( # 0 —a51) sin |(^o+ aS2) cos | ( 0 —afil) cos|(# + a£2) s in |( 0 -f 0 O) ( / i + / 2 +  / 3), (221)

where / t — e -kR\B2 I

with the upper sign for d + d̂Kiiand the lower sign for
{X + b0)

dA,

h *-kRia2
Sia (A +  £) {A +  «V(r/r0) ~ B J(R Jr0)} dA

{b -b0)
-kRiA2

d  A.

(222)

(223)

(2 2 4 ;J* (A-«)(A-S^(ro /r ) -F^(^ /r ) j  
If we put the integrands of (2 2 2 ), (223), (224) into partial fractions, and then treat the 
resulting expression for / 1.4-/2 -t* / 3 to the type of transformation which leads from (131) to 
(133), we get

+ l«W°) -B J iRJr,,r
+ (1-JV)It [B JirJr) + b J(RJr)] e ~ ^ f" ,m  , , 12I J ±iBA2 -  [B V(r0/r) +  b J(RJr)]2

J id -  [0 Vlro/ri +  B .JiRJr)]1

+ Jit A2 - « 2  + * e J io A2 - i 2 ) ’ (22S)
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46 P. C. CLEMMOW ON

where the upper sign is for 6 + 60<7r, the lower sign for d 60> tt, and

ir_  B R J J M  aJ{R0)
BR,A / M '

Note that when sin ocB2 — 0, N  = 1 and (225) reduces to (133).
The discontinuity in Hd across 6 + 60 = tt, calculated from (225), does not exactly balance 

that of the geometrical optics term (204). The reason for this slight discrepancy is not clear, 
but it can be removed by using a value of Nwhich is different from (226) though approxi­
mately equal to it when | ocm| and | ocB2| are small. To minimize the lengthy algebra we
proceed straight to the case 6 =  0 , 60 =  tt.

1 5 .  T r a n s m i t t e r  a n d  r e c e i v e r  o n  t h e  e a r t h ’ s  s u r f a c e  

151. The general formula 
Putting d =  0 , 0Q = 71, (219) gives

aJ{Rilro) = N/2 e-ii7rtan 
b J  {Rif) =  J 2  tan JaB2,

b, = 0, 0 .
(227)

To meet the above-mentioned difficulty concerning continuity across # +  # 0 =  we take

~

with the result, from (226), that 

Then (2 2 1 ) gives effectively 

where, from (225),

V 2 '
x—Htt

N

hi> bJiRJr) - ^ e  ii7r<%2̂5

H f  =  87li t~ikd{Ix + / 2 +  / 3):

(228)

(229)

(230)

/ l + / 24"/3

I

“P st
> - M i  A 2p—Mi A2 / »• /*co

,   ______  dA +  ct -  g-AiJia2 ________
r0J 0 l 2- a f R i / r 0)aA +  V r 0e J ^ a ^ r / r * ) dA

/ * ■ 1

- M i  A 2

r Jo A?“-^2(i?1/r) dA {-/; - M i  A 2

o o  ~ - M i  A 2

i* A 2- b 2{r0/r
A  o o  p - M i  A 2

dA
^ p d A ) ,  (231)

with the upper sign for 6-\-60< tt and the lower sign for
Next, we consider Hdf  There is no longer any simple relation like (135), and the foregoing 

analysis must be repeated. We confine ourselves to stating the result. Corresponding to (230)

H f  = S m e ~ ikdI 0)(232)

where / 0 is very similar to (231), the parts within the curly brackets remaining unaltered, 
provided the upper sign is used, and the external factors l/(aM— being replaced by
f/(aBl ~haS2)-

Noting that (2 1 2 ) gives
p i i T T

m = ^ - ^ )  + y f)> (233)
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we are now in a position to write down the expression for the complete ground-to-ground 
field. In order to cast the solution into its most compact form we introduce the appropriate 
‘ numerical distances ’ via the quantities

Zoi =  > 7? =  W aBi>

7 0 2  =  lkra2B2, =  ikda2B2i (234) 

and also make use of the relations

6 (0 , 7 ,) I  >e»*JF(y,) 1 1 1 , 2 ) (235)

6 ( 7 o i, Z02) +  ̂ ( 7 o25 7 o i) =  2i- (̂7oi) ^(^02), (236)

the first of which has already been mentioned in going from (138) to (139), the second being 
proved elsewhere (Clemmow & Senior 1 9 5 3 ).

Thus, when the transmitter and receiver are on opposite sides of the boundary, the factor 
A by which the free-space field must be multiplied to give the actual ground-to-ground 
field is

RADIO PROPAGATION ACROSS A BOUNDARY 47

A
l B l  T a £ 2  V

2eii
a£l ^-(Zl) + a£2-^-(y2)

Jtt
Z i^/on  y . J r ) ^ B2y2G(y02 7) 2 i J a52 7i72) ^(7oi)^(7o2)

(237)

When the receiver is on the same side of the boundary as the transmitter we may use in (213) 
and (214) approximations analogous to those adopted in §7-3; these give +  — 0 ,
whence the diffraction field is negligible and the total field is effectively that pertaining to 
a homogeneous earth. Both this result and (237) cannot be assumed to hold within half 
a wave-length, say, of the boundary.

15 2 . Limiting cases: the geometric mean formula
The formula (237) is clearly reciprocal, being unaltered by the transformation -<-> r0, 

ocB 1 *-> aB2.It is somewhat complicated, but may be seen to have the expected behaviour in
a number of limiting cases.

(1) asi =  a£2- Then yx — y2, y01 Jr == y02 Jr0,so the part in square brackets vanishes and 
the formula A = 2K(yl)for a homogeneous earth is recovered.

(2 ) r — 0 . Then y02 — 0 , y01 — yx, 7o2\/{rolr) = 7i-> and use of (235) shows that (237) 
reduces to A = 2A(y01), which gives the field at distance from a transmitter in the presence 
of a homogeneous earth of medium 1 .

(3) olb2 =  0. Then y02 =  7 2  — 0  and (237) becomes

A = 2 L(y1) + - j^ r y1G^y01,y01J ~ Sj;(238)

hence (154) is recovered, with modifications arising only from the slightly different defini­
tions of the ‘numerical distances’. This result indicates the extent to which the use of 
approximate boundary conditions is justified.
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48 P. C. CLEMMOW ON

(4) | y0 1 1, I 7 o2 I ^  1- The asymptotic approximations

FM ~ W a’
(239)

G(a’ 4 ) ~ 2 ia(a2 + P )  ’
(240)

(241)

for large | a | show that in this case the expression in square brackets in (237) vanishes to our 
order of approximation, and hence

^Bl+^52\7l 72/

= - cr 4 ^ e ( « L + cr )  from (234)-

This may be written A~ ^ (242)

which is evidently the geometric-mean formula discussed in §4. The present derivation 
shows that it is applicable when the distances of the transmitter and receiver from the 
boundary represent large ‘numerical distances’ relative to the respective media on which 
they are situated. On this count Millington’s method for the mixed-path problem is in 
error; for his procedure the corresponding condition is the stricter one that the distances of 
the transmitter and receiver from the boundary represent large ‘numerical distances’ 
relative to both media.

(5) r =  r0. This case is mentioned here because when it holds formula (237) is expressible 
in terms of the Fresnel integral.

For from (236) we have
7w) =  i^ 2(7oz) (* =  1,2), (243)

giving A =  â  + aJ ctBlK(7l) +aB1K{y2) -----fe i^fro i) — as2 ^ (r 02)P) • (244)

It may be mentioned that Millington’s method always leads to the geometric-mean formula 
when r ----- r0, as is clear from (166).

16. A NUMERICAL EXAMPLE: COMPARISON WITH EXPERIMENT

A ground-to-ground experiment has been conducted by Millington ( 1 9 4 9  a; see also 
Millington & Isted 1 9 5 0 ) which is ideal for comparison with the flat-earth theory given in 
the present paper. It was on a frequency of 77-5 mc/s (a wave-length of approximately 4  m), 
with a transmission path partly over land (medium 1 ) and partly over sea water (medium 2 ) 
having a total length of about 4 km (the further section over land again being of no concern 
here). The conditions are closely represented by

aBi =  h«B2 =  ^  eiiw, r0 =  350/1, 550/1. (245)

From (245), y01 and yx are real and much greater than 1 , but | y2 | is of the order of 
unity; in particular, y\2 (r0/r) == 1-22171. The asymptotic expansions (239), (240), (241)
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49RADIO p r o p a g a t io n  a c r o s s  a  b o u n d a r y

were therefore used to some extent in (237), but could not be applied to F(y02), and
G(y02, 7 o2 J{rJr)). Since arg y2 =  arg y02 =  J?r, it was possible to evaluate the first two of these 
with the help of the tables of |fj§  eA2 dA, (246)

Jo

given by Miller & Gordon (1 9 3 1 ) for real values of x. The last was handled by a numerical 
evaluation of rx ^a2

d4 (247)x — X 2 I
, A2+  1-2217

for real values of % between 0 and T5.
The results of the complete computation are illustrated in figures 15 and 16.
Figure 15 shows the attenuation curve, appropriate to a point-source, for the composite 

path, those for the respective homogeneous earths also being included for comparison 
purposes. The mixed-path curve contains a region of marked recovery, the field-strength 
rising very steeply just beyond the boundary to a local maximum some 1 0  db above its value

distance (wave-lengths)

Figure 15. Field-strength (in decibels above an arbitrary level) against distance (in wave-lengths) 
from the transmitter (a)for a homogeneous medium, sea water with sin exp (Jbr),
(b) for a homogeneous medium, land with sin -  +  for the mixed-path, by the present 
method, (d)for the mixed-path, by Millington’s method.

there, at a distance from it of about 1 0 0  wave-lengths; and is just beginning to run parallel 
to the * all-sea ’ curve at the limit of the graph. The curve derived from Millington’s procedure 
is shown dashed, and away from the boundary lies only about 1 db above that calculated 
from (237). The individual crosses are experimental points; they have been plotted relative 
to the dashed curve in order to allow for a slight discrepancy between the present graphs and 
those given by Millington, due possibly to small differences in the choice of values for 
and aB2.

V ol. 246. A. 7
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50 P. C. CLEMMOW ON

The corresponding phase curves are shown in figure 16. Although the phase for the ‘all­
sea’ path is already below that for the ‘ all-land ’ path at 350 wave-lengths from the trans­
mitter, there is nevertheless, for the composite path, a very rapid phase recovery just beyond 
the boundary: the curve rises steeply to a local maximum at about 2 0  wave-lengths from 
the boundary, and then settles down quickly to run parallel to the ‘ all-sea ’ curve, its ultimate 
asymptotic value being —135°.

distance (wave-lengths)

Figure 16. Phase (in degrees relative to that of the free-space field) against distance (in wave­
lengths) from the transmitter (a)for a homogeneous medium, sea water with sin --- ^  exp ( f  in j,
(b) for a homogeneous medium, land with sin — J, (c) for the mixed-path.

17. E lev a ted  transm itter  and  r e c e iv e r  : r a y  t h e o r y

To complete the analysis we set out briefly in this section the results of a ‘ ray theory ’ 
corresponding to that given in §9 -1 .

The appropriate steepest descents approximation to (205) for sufficiently elevated trans­
mitter and/or receiver is (cf. (159), (160))

Hi
aji 7T (sin sin ocB2) sin 6  ̂sin 6

n J (271) sin a51 (sin F0 +  sin a-2 2 ) (sin d +  sin aB2) L x(cos 0O) L x(cos 6)

X f f — ty  COS e-Mfoc o s co«0 ABJ  s(0)J 5 (0) cos (a +  #0) +cos (/?+#) P

1 0  ii 71_ (sin ccBl — sin «Æ2) sin sin 6— / - e
sin ocBl (sin +  sin afi2) (sin 6  +  sin afi2) Lx (cos 0 O) L x (cos 6 )

F w m - s m  .
I m̂* # ^ - 1 '

i k R i (248)
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with the upper sign for d + 0o<irand the lower sign for The corresponding
geometrical optics term is

RADIO PROPAGATION ACROSS A BOUNDARY 51

e-i

Hi

- i  k S

A k R )+p^ m f)  7 W ) f249'
- i k R - i  k S

J ( k R ) +P2(sin^  J W )
It is easily seen that the combination of (248) and (249) is continuous across 

For on this line d =  f ,and from (207)

sin i]r
sin otm(sin i]r+ sin aS2) (cos Lx (cos sin f  +  sin a51'

so that (248) becomes

Hdz = {p2{ s i n f ) - p l{sm
1 - i k S

J{k(S+R)}

(250)

(251)

the discontinuity in which just balances that in (249). The complete field 
in fact

p - i k R  r  K V f  o - i k S

H. '{kR)
, J?)Vh e~ikS
||[/?i(smf) +/)2(sin ft)] +  [/>i(sin f )  —p2{sinijr)]j-eiin ) J{kS)

(252)

The formula (252) is a generalization of (165), the two being obviously equivalent when 
^ 2  (sin f )  = 1.

1 8 .  C o n c l u d i n g  r e m a r k s

The main object of this paper is to give an analytical treatment of a suitably simplified 
problem which is fundamental in the theory of radio propagation over an inhomogeneous 
earth. This purpose is achieved by establishing, with adequate rigour, formulae from which 
any example could be largely worked out; furthermore, these formulae are simple enough, 
at least in special cases, to demonstrate the general nature of the effects involved, and they 
provide, in particular, a theoretical confirmation of the sufficiency of Millington’s method 
in practical application. Many other aspects, however, remain to be considered; for 
example, as noted in the introduction, problems of great interest arise which are allied to 
but somewhat different from that treated here, in addition to those involving the obvious 
generalizations of increasing the number of media and allowing for the curvature of the 
earth’s surface. There are several ramifications of the present analysis which may lead to an 
understanding of a wider range of phenomena; it is hoped that these will be pursued in 
detail elsewhere, but we conclude by indicating something of their scope in a brief critique of 
the mathematical method.

Let us begin by considering the limitations of our method. In the first place, it applies 
only to a single boundary; integral equations could be set up in more general cases, but no 
rigorous solution then appears possible; indeed, it would seem that the separation of the 

surface of discontinuity, y = 0, into two homogeneous sections extending from x = — co to 
x = 0  and from x =  0  to x =  +oo, is a vital condition for the success of the exact analysis; 

for example, even the problem of a plane wave incident in free-space on an infinitely thin,
7-2
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52 P. C. CLEMMOW ON

perfectly conducting strip of finite width has not yet proved tractable to the present 
technique. Again, the assumption that the earth’s surface is flat cannot be waived.

Turning from the question as to when a formal solution is possible, we now consider 
the method used for its reduction to an expression capable of yielding numerical results. 
Basically, the procedure is to remove certain factors from the integrand of a double integral 
at the ‘predominant’ values of the two variables of integration; exactly which factors are 
involved depends on the particular 6 and 60, but part of the integrand has always to be 
treated in this way before any progress can be made. The extent of the error thus introduced 
cannot be stated with precision, but it seems that the validity of the method depends on kr 
and kr0 being ‘ large ’ in the sort of way that is common in the calculation of radiation fields; 
this despite the fact that the resulting approximation to the solution is finite and continuous 
at r =  0  and r0 = 0  (/2q=0 ), not having the infinity which usually indicates the failure of an 
asymptotic expression.* It may be remarked that the restriction is likely to be most stringent 
with regard to the phase, and this is especially unfortunate if it is true that coastal refraction 
phenomena are largely determined within a wave-length of the coastline.

The direct scope of the solution is limited by the difficulties of computation. It would, of 
course, be out of the question to tabulate G(a, b) over the required complex range of a and b. 
There are, however, a number of results connecting G(a, b) with the Fresnel integral 
(Clemmow & Senior 1 9 5 3 ), and the prime need for facilitating the calculations is really 
a tabulation of this latter function, which would in any case be valuable in other problems. 
As a contribution to this end Clemmow & Munford (1 9 5 2 ) have computed a four-figure 
table ofF[V(i7r) <2], 0<  | a | <0-8, 0 <arg<2 < 4 5 °, at intervals suitable for linear interpolation 
each way; but much remains to be done to close the gap between these values of | j and 
those for which the asymptotic expansion is adequate.

We now discuss several means by which further results might be obtained. Perhaps the 
most pertinent question to ask is whether the method can be directly adapted to treat the 
case of a point-source. The answer is probably yes, the fundamental consideration being 
a suitably polarized plane wave incident at an arbitrary angle, the plane of incidence being 
no longer constrained to lie normal to the boundary line. At first sight it seems likely that 
the technique given elsewhere (Clemmow 1 9 5 1 , Miles 1 9 5 2 ) for solving quasi three-dimen­
sional diffraction problems would be applicable in this case, but a closer inspection indicates 
that a derivation of the complete solution meets with the following difficulty: in the problem 
of reflexion at the interface of two media the basic polarizations are, in the present notation, 
those for which Ey = 0  or Hy = 0 respectively; whereas, in diffraction problems dealing with
two-dimensional conductors in free-space, whose generators are parallel to the z-axis, the 
basic polarizations are those for which Ez — 0  or Hz 0 respectively; and it is not yet clear 
how these different aspects can be combined. On the other hand, whether or not this 
difficulty can be resolved, the use of approximate boundary conditions reduces the problem 
to a scalar one which is certainly tractable, as the work of Griinberg and Feinberg shows.

Even if the solution for a point-source were obtained it would be complicated and subject 
to the limitations described above, so that simpler approximate methods should certainly 
be considered. One approach is to apply the formulae for normal incidence to each radial

* This point might repay closer examination. For instance, the behaviour of the expression (154) at 
r = 0 is that which would be expected, from general diffraction theory, in the exact solution.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

03
 J

ul
y 

20
23

 



r a d io  PROPAGATION ACROSS a  BOUNDARY 53

independently, as has been suggested by Millington with reference to his own work, Fein- 
berg’s analysis lends support to this idea. Again, as regards coastal refraction, the arguments 
of Eckersley and Ratcliffe can be more forcibly applied to phase curves such as that shown 
in figure 1 1 : in physical terms, the phase velocity over land just before the boundary is 
negligibly less than that of free-space propagation, whereas over sea just beyond the 
boundary it is very much greater ; Struszynski (in the Discussion following the paper by 
Millington & Isted (1 9 5 0 )) has suggested qualitatively that this will be the case by a simple 
argument based on the tilt of the wave-front near the earth s surface, although in the 
author’s opinion his reasoning is not entirely unambiguous. This effect certainly implies 
a ‘ refraction ’ in the right direction, but the magnitude would appear to be so sensitive to 
the conditions of the experiment, in particular to the positions of the transmitter and 
receiver, that nothing further can usefully be said at this stage. Incidentally, Millington s 
speculation that his technique might also be applicable to phase is to some extent borne out 
by the analysis of this paper, though it would be liable to give errors in certain circumstances.

With reference to the ‘ image’ method mentioned at the end of §9T, it might be extended 
by using the exact image (9 ) of a line-source in a homogeneous, flat earth in place of the 
special image (163). This procedure would avoid the introduction of the function , it also 
offers the possibility of an approximate examination of the field in the immediate vicinity 
of the boundary, and is equally applicable to the case of a primary point-source without 
restriction on the direction of propagation. On the other hand, it is limited by the require­
ment that one of the media be a perfect conductor.

Finally, a word should be said about the case of horizontal polarization. The formal 
solution could be obtained by an analysis similar to that for vertical polarization, though 
its reduction to a workable form would proceed on somewhat different lines because the 
steepest descents technique would no longer be characterized by the existence of a pole close to 
the saddle-point. Alternatively, because of the invariance of Maxwell’s equations under the 
transformation E->H, H ^  — E, e ^  ju,the general solution in part II must yield that for 
horizontal polarization (in terms of Ezrather than Hz) on writing for and 1 for

otB2.For the ground-to-ground field the geometric-mean formula would be valid for all 
positions of the receiver on the opposite side of the boundary to the transmitter except those 
very close to it. On the other hand, the height-gain is so great near the earth’s surface that 
this case is not of much practical consequence, and indeed the effect of inhomogeneities in 
the ground is generally likely to be much less marked than for vertical polarization.

This work was carried out partly at the Cavendish Laboratory, Cambridge, and partly 
at the Department of Electrical Engineering, Imperial College of Science and Technology; 
acknowledgement is made of the receipt of grants from the Further Education and Training 
Scheme and the Department of Scientific and Industrial Research covering the periods 
concerned. The author would like to express his thanks in particular to Professor H. G. 
Booker for initiating the research and inculcating many useful ideas, and also to Mr J. A. 
Ratcliffe, F.R.S., Mr G. Millington and Mr N. Elson for a number of helpful discussions.
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