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A theoretical investigation is given of the phenomena arising when vertically polarized radio waves
are propagated across a boundary between two homogeneous sections of the earth’s surface which
have different complex permittivities. The problem is treated in a two-dimensional form, but the
results, when suitably interpreted, are valid for a dipole source. The earth’s surface is assumed to
be flat.

In the first part of the paper one section of the earth is taken to have infinite conductivity and is
represented by an infinitely thin, perfectly conducting half-plane lying in the surface of an other-
wise homogeneous earth. The resulting boundary-value problem is initially solved for a plane wave
incident at an arbitrary angle; the scattered field due to surface currents induced in the perfectly
conducting sheet is expressed as an angular spectrum of plane waves, and this formulation leads to
dual integral equations which are treated rigorously by the methods of contour integration. The
solution for a line-source is then derived by integration of the plane-wave solutions over an
appropriate range of angles of incidence, and is reduced to a form in which the new feature is an

integral of the type

where aand b are in general complex within a certain range of argument.

The case when both the transmitter and receiver are at ground-level is considered in some
detail. If the receiver is a large ‘numerical distance’ from the transmitter, further simplification is
possible; the results then agree with some previously given by Feinberg, whose method, however,
was quite different. The practical adequacy of Millington’s graphical technique for deriving
attenuation curves of the ground-to-ground field is demonstrated, and the possibility of an increase
of field-strength with distance is confirmed. This ‘recovery effect’ is illustrated by a numerical
example in which the phase curve is also shown to rise steeply just beyond the boundary, indicating
a phase velocity in this region much greater than that in free space.

A different approximate form of the general solution is obtained when the transmitter and
receiver are sufficiently elevated; this is used to indicate the validity of the application of height-
gain factors over an appreciable range of heights.

In the second part of the paper the restriction that one of the earth media should be perfectly
conducting is waived. A condition, usually met in practice, is assumed, namely, that the modulus of
the complex permittivity of each section of the earth is large. Approximate boundary conditions
are then likely to be valid, and their introduction makes possible an analytical treatment on the
same lines as before. The solution is again reduced to a form only involving, apart from standard
features, integrals of the type @ Various features of the expression for the ground-to-¢
field are examined; in a numerical example the attenuation and phase curves are given, the former
being compared with the results of an experiment previously reported by Millington and the
agreement shown to be good. The different approximate form of the solution when the transmitter
and receiver are sufficiently elevated is briefly considered.

Finally, some ramifications of the theory are outlined.

1. Introduction

IT. The genesis and nature of the problem

The theory of the propagation of radio waves over a smooth, finitely conducting, homo-
geneous earth, neglecting atmospheric and ionospheric effects, is now well matured. The
first correct discussion of the case when the distances from the transmitter are sufficiently
small for the earth’ssurface to be considered fiat was given by Sommerfeld (1909) over forty
years ago, and independent fundamental treatments adopting the model of a spherical
earth, appropriate for greater distances, have been presented more recently by Vvedensky
(1935,1936,1937), Van der Pol & Bremmer (1937, 1938,1939) and Eckersley & Millington
(1938). In practice, however, the earth’s crust may be significantly , and the
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need has long been felt for a theory which would at least take into account the more pro-
nounced variations in the electrical properties of the terrain over the region ofiinterest. The
most striking features of the complicated general problem thus presented appear when
vertically polarized ground-waves are transmitted across a boundary ofdiscontinuity, such as
a coast-line, which separates two media of markedly different characteristics. A theoretical

treatment of this aspect is given in the present paper.

medium 1 medium 2

Figure L Propagation path across a boundary separating two different media.

Figure 1is a plan of a smooth area of the earth’s surface in which the boundary line |
separates the (homogeneous) media 1and 2, on which are situated, respectively, the trans-
mitter T and receiver Rhere are three branches of radio technique in which it may be
necessary to consider the consequences of a physical model of this type:

(&) Field-strength assessment. The service area of a transmitter depends profoundly on the
nature of the ground, and the presence of marked inhomogeneities in the earth s surface is
therefore of practical importance. The first suggestion for estimating the variation of field-
strength with distance along a composite path was made by P. P. Eckersley (1930), and
latterly considerable attention has been given to this question, which is sometimes referred
to as that of ‘mixed-path attenuation’.

(6) Directionfinding. In certain circumstances it has been found that the apparent bearing
of T from Rreasured by standard radio methods can be appreciably different from the
true bearing. This phenomenon was first noticed by T. L. Eckersley (1920), and iscommonly
known as ‘coastal refraction’.

(© Navigation. The operative principle of some modern radio navigation equipment is
the interpretation of accurate phase measurements. The significance, in this connexion, of
the variation of the phase velocity of waves propagated over a homogeneous earth was
stressed by Norton (1947) and Ratcliffe (1947 a), and the corresponding effect with a com-
posite path, which is complicated by the distortion of the phase fronts arising from the
discontinuity at /, must also be considered.

These issues are, of course, interlinked, and a complete solution of the boundary-value
problem illustrated in figure 1would apply to all three. The analytical difficulties, however,
are formidable, and in this paper the mathematical discussion is confined explicitly to the
two-dimensional case in which the boundary between the media is straight and the trans-
mitter is an infinitely long (vertically polarized) line-source parallel to it. On the other hand,
it seems very probable that, suitably interpreted, the solution may be applied to the problem
when the source is a more practical aerial such as a vertical dipole. This contention (known
to be true for a homogeneous earth: see §3 and also Booker & Clemmow (19506)) is evidently
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most reasonable at ‘normal incidence’, that is, when is perpendicular to I; and in con-

sequence the treatment here is chiefly directed at where the main features are expected

to be independent of the angle of incidence, rather than at  or (c), which would require

a more specific consideration of oblique incidence. Nevertheless, the variation of phase as

well as amplitude is established in the solution to be given, and it should therefore act as

some guide in these latter problems \particularly is this so since subsequent wo
as also does that of Feinberg (1946), that to a marked extent the field along each radial line

from the transmitter depends only on distance measured along that line and not on its

direction relative to the boundary.

In what follows it is assumed that the earth’s surface is flat. As in the theory of a homo-
geneous earth, the analysis is governed by this assumption, and cannot therefore be extended
to deal with the case of a spherical earth, for which a quite distinct treatment would be
required.

distance (wave-lengths)

Figure 2. Field-strength (in decibels above an arbitrary level) against distance (in wave-
lengths) from the transmitter for homogeneous earths: medium 1; medium 2.

For practical purposes, the theory of propagation over the earth is conveniently expressed
by means ofgraphs which show the variation of field-strength and phase with distance from
the transmitter. The field-strength in decibels above an arbitrary level and the phase in
degrees relative to that of the undisturbed free-space field of the transmitter are plotted

against pahere dis the distance and Xte wave-length. It shoul
curves in this paper are referred to a transmitter for which the free-space field in the
‘radiation region’ falls off inversely as ¢br a line-source this field

and a further factor 1jjd must be introduced in adapting the two-dimensional analysis to
a point-source. Two typical flat-earth attenuation curves are shown in figure 2; curve
(@) is for a homogeneous earth of medium 1and curve (b) for homogeneous earth of medium
2, say, where the modulus ofthe complex permittivity ofmedium 2 is much greater than that
of medium 1. The present problem, in short, is to calculate the corresponding curve for an
inhomogeneous earth when the ground between the transmitter and receiver consists of
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medium 1in one section and medium 2 in the other. And similarly with phase. A question
of particular interest is the possibility of an
region just beyond the boundary, the ‘recovery effect’.

1-2. Previous work

Of the various theoretical approaches to ‘coastal refraction’ and ‘mixed-path attenua-
tion’, two pieces of work, quite distinct in character from each other, seem of major im-
portance. One is an analytical approach, nominally directed at the former problem,
initiated by Griinberg (1942, 1943) and developed by Feinberg (1944, 1945, 1946); the
other, due to Millington (19496), an ‘engineering > method for the latter problem.

Griinberg showed that the adoption of approximate boundary conditions and a standard
application of Green’s theorem yield an integral equation for the normal component of
E at the earth’s surface. He considered the case of two earth media, one of which has
infinite conductivity, separated by a straight boundary, and took the incident field to be
a plane wave. While appreciating that his integral equation could be solved by the exact
method of Wiener & Hops (Titchmarsh 1937), he preferred an approximate treatment from

which he established that the direction of propagation at a great distance beyond the
boundary is the same as that of the incident wave. Griinberg’s work was generalized by
Feinberg in a series of papers of which the fourth (Feinberg 1946) treats this problem, but
with the difference that a transmitter located at a finite distance from the boundary is
introduced. The analysis is so manipulated that an assumed value may reasonably be sub-
stituted for the unknown field component under the integral sign; in this way the problem
becomes one of integration, and limiting expressions are derived appropriate to various
positions of transmitter and receiver. These latter important results have apparently
attracted little attention in this country, and the present work was completed before they
became known to the author.* As will be clear from 82-1, the method of this paper is quite
distinct and the treatment in some respects complementary; on the other hand, such
formulae as do correspond show complete agreement.

An entirely different approach has led Millington (19496) to suggest a simple technique
for deriving mixed-path attenuation curves, when the transmitter and receiver are both
at ground-level, from the appropriate individual curves for homogeneous earths. His pro-
cedure has affinities with those of P. P. Eckersley (1930) and Somerville (Kirke 1949); but
it is much more skilfully contrived than either of these, being designed, among other things,
to satisfy the reciprocity requirement regarding the interchangeability of transmitter and

receiver which these other two methods clearly violate; to this end it takes into account the
one special result which can be deduced immediately from homogeneous earth analysis,
namely the ‘geometric mean formula’, first given by T. L. Eckersley (1948, p. 78) specifically
for the case of a spherical earth where the boundary is in the diffraction region of the trans-
mitter and receiver, and shown by Millington to be more generally applicable. Millington’s
technique is based on arguments of a conjectural nature, but its predictions, including the
possibility of a ‘recovery effect’, have proved to be in remarkably good agreement with
experiments over a wide range of frequencies as described by Millington (1949*2,  Elson

* | am indebted to Mr J. J. Myers for drawing my attention to the paper of Feinberg’s which is of
particular relevance.

idf field-strength witl
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(1949), Millington & Isted (1950) and Bramslev (1949; see also the Discussion following
Millington & Isted (1950)). It is therefore of practical importance to note that the present
analysis indicates that field-strengths estimated by Millington’s method are not likely to be
appreciably in error, and an ‘engineering ’ solution is thus given good theoretical backing,
notwithstanding that its success appears to be to some extent fortuitous.

Finally, some tentative suggestions regarding a mechanism for coastal refraction, recently
offered by T. L. Eckersley (1948, p. 97) and Ratcliffe (19476), should be mentioned.When first
discussing this phenomenon Eckersley (1920) reasoned by analogy with ordinary refraction
theory, but based his argument on the invalid concept of propagation due to Zenneck (1907);
the later approach is similar in character, but invokes the correct analysis for a flat or curved
homogeneous earth. Whatever value such ideas may prove to have will certainly be
enhanced by considering them in terms of the present mixed-path solution, since this pro-
vides a much fuller description of the variation of phase across a coastline than has hitherto
been available.

PART I. WHEN ONE MEDIUM HAS INFINITE CONDUCTIVITY
2. Generalities
2 1. The idealizedproblem and method of solution

As already stated, the mathematical attack is on the two-dimensional form ofthe problem
in which we have a vertically polarized line-source parallel to a straight boundary. This
model may be compared with the idealization suggested by Millington (19496) of axial
symmetry about a vertical dipole.

In this first part of the paper we also specialize by the assumption that one of the media
(medium 2) has infinite conductivity, and this medium is replaced by an infinitely thin,
perfectly conducting, semi-infinite sheet situated in the interface of the air (regarded as
free-space) and medium 1, the latter being taken to fill the complete region below the
interface (figure 3). The assumption of perfect conductivity for an earth constituent may
sometimes be justified, sea water, for example, often fulfilling this condition to an adequate
degree ofaccuracy. Furthermore, under most practical conditions the radiation penetrates
negligibly into the ground, so that the results given by the model of figure 3 are not likely to
be significantly different from those obtained (were it possible) from a more realistic model
in which medium 2 has a finite depth.

free-space R

Figure 3. The model of the idealized problem.

Since the more general problem involving two arbitrary media is discussed in the second
part of the paper, it is perhaps as well to state why it seemed desirable to begin with a
particular case. In the first place, with the model of figure 3 an exact solution is possible;
this is not so when both media are arbitrary, and it is then necessary to assume approximate
boundary conditions at the outset of the analysis; such a procedure (adopted by Griinberg
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& Feinberg) is, perhaps, open to objection, and it is reassuring to find that, when applied to
the special case, it gives virtually the same result as the exact solution. Secondly, the
geometric mean formula already mentioned refers, as is shown later, to circumstances in
which ‘ray theory’ may be used with effective Fresnel reflexion coefficients of —1 for both
media; a model in which the reflexion coefficient of medium 2 is always +1 is therefore of
particular interest in that it represents a situation where these conditions are completely
violated. Thirdly, the analysis is somewhat complicated and may be more easily followed by
starting with the special case which furnishes some relatively compact formulae and a
straightforward physical interpretation.

The problem illustrated in figure 3 has so far been regarded as a generalization of that of
propagation over a homogeneous earth. It may also be thought ofas a generalization of the
famous problem, likewise first solved by Sommerfeld (1896), of diffraction by a perfectly
conducting half-plane, to which it would revert if medium 1were free-space; and from this
point of view the recovery effect appears perhaps less remarkable than might otherwise be
supposed. In the present case, however, the features commonly associated with diffraction
are obscured by the fact that both the line-source and point of observation are very near the

igure 4. The line (01%cross which the field of ‘geometrical optics’ is discontinuous.

earth’s surface, and this rules out the possibility of using any simple approximation of the
Huygens-Kirchhoff type. On the other hand, as described below, an exact method of
solution is available in which it is convenient to preserve the concepts of a ‘geometrical
optics ’ field and a “diffraction’ field. In figure 4, T'is the image of Tin the earth’s surface,

and l'is the point at infinity on T'O produced; by definition, the geometrical optics field in
the free-space region to the left of 01is that which would obtain for a homog
of medium 1; in the region to the right of 01that which would obtain

perfectly conducting earth; the residue of the total field is the diffraction field, which, in

particular, has a discontinuity across 01 counterbalancing that of the geometrical optics

field. A diffraction field can often be interpreted as arising from a fictitious source located

at the diffracting edge; in the present case it may be thought of as some disturbance due to

the boundary, although it cannot be conceived in terms ofa line-source at  for positions of

the receiver as close to 0las those with which we are concerned; for these positions ti
diffraction term is comparable with that of geometrical optics, and its evaluation forms the

chief part of the analysis.

It is evident that the mathematics of our problem must represent a fusion of (exact)
diffraction theory and propagation theory. The fundamental contribution in each of these
fields was made by Sommerfeld, but the methods originally used bear no relation to one
another and cannot be readily generalized in the way which we require. On the other hand,

Downloaded from https://royal scietypublishing.org/ on 03 July 2023
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a powerful technique which expresses any electromagnetic field as an angular spectrum of
plane waves (Booker & Clemmow 1950a) has been shown to be effective both in the theory
ofpropagation over a flat, homogeneous earth (Booker & Clemmow 1950")5 and in rigorous
diffraction theory (Clemmow 1951). The method is appropriate to the present problem and
is applied in this paper.

In 83 some results from the theory of propagation over a homogeneous, flat earth are
briefly derived in a way specifically suited to the subsequent discussion, attention is drawn
to the explanation of the sign error in Sommerfeld’s 1909 paper which has given rise to
a controversy recently revived by Epstein (1947) and others. It is then shown (84) that for
a composite path the geometric mean formula can only be justified on a ray-theory basis
together with the assumption that both media have effective reflexion coefficients of 1.
In 85 the problem ofa plane wave incident on the interface shown in figure 3 is expressed in
terms of dual integral equations and the formal solution obtained. The corresponding
solution for a line-source is deduced by representing a cylindrical wave as an angular
spectrum of plane waves, and some reduction is carried out (886, 7). The special configura-
tion in which both the transmitter and receiver are on the earth’s surface is considered more
closely, and agreement found with Feinberg’s results in limiting cases; the recovery effect
is illustrated by a numerical example in which the field-strength and phase curves are
plotted (88). In 89 the different approximate form which the solution may assume when
the transmitter and receiver are sufficiently elevated is examined with particular reference
to the use of height-gain functions. The reason for the success of Millington’s technique
when applied to the present problem is analyzed in §10.

2-2. Someremarks on notation
The following remarks are intended as a general guide, and symbols not listed below are
defined as they arise in the text.

With Cartesian co-ordinates X, y, z, the earth’s surface is taken as the plane = 0; the
origin is located at Oas in figure 3, the z-axis being along the boundary and tt
dimensional field independent ofz. Polar co-ordinates r, 6 are also used, where cos 0,
y —rsin < #<2 Other co-ordinates are:

fOA co-ordinates of the transmitter T
R distance from T
S,i polar co-ordinates measured from the image
— ™ Scos | horizontal distance from T
r+ro

The configuration is illustrated in figure 5.

Figure 5. Notation and configuration.
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Rationalized m.k.s. units are used, and a time factor exp (iwf) suppressed throughout.
We write

el permittivity in farads/metre,
Si permeability in henrys/metre,
0 conductivity in mhos/metre,

e = el—io/o) complex permittivity,
k—(oJ{e[i) propagation constant,
Z=1/Y = J(jule) intrinsic impedance,
these symbols referring to free-space (for which = 0, ej), and the same symbols with

dashes denoting the corresponding quantities for the earth (medium 1I).
A two-dimensional electromagnetic problem is essentially scalar, the vertically polarized

field H = (0,0,Hz), E = (ExEY0) being expressible in terms of Hz via Maxwell’s equatit

* e ikay s i W

Formulae are therefore given for Hz only. In propagation theory it is perhaps more usual
to work in terms of the component of E normal to the earth’s surface, but for the radiation
field at sufficiently small angles of elevation

Ey =ZHz, 2

and so the distinction is unimportant. For convenience we suppose that the transmitter
(line-source) has a circular polar diagram, though an arbitrary polar diagram could equally
well be considered; its undisturbed field in free-space is then given by

T 6

Superscripts attached to the field components have the following significance

nrf f #iscattered field respecti
g,d  geometrical pdiffraction field respectively;
p field associated with an incident wave.

Three abbreviations, although defined in the text, are listed here for reference; they occur
frequently in the analysis:

F{a)= e isl2s V iA2dA,
Ja

K{a) —1—2i
[0 p—iAe

Gla b)=

Finally, we note that S(p)s used for the Gteepest descents’ path of integration pas:
through the real angle @ no confusion should arise between this and the S defined above.

Vol. 246. A. 2
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Z. Some results from the analysis for a homogeneous earth

In this section we briefly treat the problem of propagation over a homogeneous earth. The
purpose is to obtain the standard results by a method and in a form with which direct com-
parison can be made when we come to the mixed-path problem.

We consider a line-source, specified by (3), situated in free-space above a homogeneous
earth of finite complex permittivity occupying the region y< 0, and we are interested in the

radiation field at small angles of elevation (kR*=>1, f small).

The basic formula for the factor by which the free-space field must be multiplied to obtain
the field in the presence of the earth is (22). When the transmitter and receiver are both at
ground-level it reduces to (24). At large ‘numerical distances’ useful simplified results are
(25) for this latter case, and the ray-theory formula (26), applicable when the transmitter
and/or receiver are sufficiently elevated. Also of great value are the ‘height-gain’ factors
implicit in (31).

31. The general solution

Confining the discussion to the region ¥Owe consider a plan
fipi —"Nor o6
which is incident on the earth’s surface at an angle  This gives rise to the reflected wave
HP/ = /)(sin a) ei*rcosfy+a), (5)
where /<sin® = { S I n H{sina+ -J[ L cosZa")n)Z) (6)

is the earth’s Fresnel reflexion coefficient and

- - & - o )
assuming that the permeability of the earth is the same as that of free-space. In order to
derive the field for a line-source situated at rO  we express the incident cylindrical wave

(3) as an angular spectrum of plane waves of the type (4). Introducing the appropriate
phase factor exp {— ikrBos (#0—a)}, we have

j(27T)dc HE -y edAoa(od

Figure 6. Paths of integration in the complex a-plane.

eikrooSkj
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where the path Gishown in figure 6. Gionly one of an |
but is particularly convenient in that along it cos ranges over real values from T oo to
(Booker & Clemmow 1950 a,b;Clemmow 1951). The reflected wave corresponding to (8)
is evidently found by multiplying (5) by (27r)_iexp{ —i[ArOcos +5”7]} and integrating
with respect to ddong C; thus
r
sin a) elMcos™ +aMct. 9
—C (©)
If we write , ) 1 cos2ali
//(sin a) = yo(sina) —1 “n COnS;GM Isina + (10)
the complete field becomes
H =J(in) e-i" {HQ\kR)+H™ (kS)}+A(S, (12)
h A(S Pt f ina) eifcos” +a)d
where : = sina) ei +a)da.
G e ) Ksina) )

The term A(S, f) in (11) is the field which must be added to that pertaining to a perfectly
conducting earth, and its evaluation constitutes the core of the problem. It has been shown
elsewhere (Booker & Clemmow 19506) that this term is essentially equivalent to the free-
space field of a Zenneck wave diffracted under the image line T' (figure 5). A Zenneck
(1907) wave is a plane wave incident on the earth at the Brewster angle  defined by

tanaB= 1 13)

and an appeal to the well-known formula of edge-diffraction theory leads to the required
result for the radiation field. For our present purposes, however, we proceed to an approxi-
mate evaluation of (12) by using an extension of the standard method of integration by
steepest descents. The technique, suggested by Pauli (1938), was applied to the three-
dimensional form of the present problem by Ott (1943); it has been considered in some
detail by the author (Clemmow 19506) and proves indispensable in the sequel.

The first step is to displace the path of integration in (12) to that of steepest descents.
We denote by S ({5, where ()is any real angle between 0 and 77, the path, shown in figure 6,
over which the new variable of integration

t— s,\n{oL —()) (14)
traverses real values from —00 to +00. Then the required path of steepest descents is
S Ts—ilr), the ‘predominant’ value of d(the saddle-point) being clearly n—ijr,
expected from physical considerations. Now the singularities of //(sin a) are branch points

cosa = (15)
1
d poles at -smaD- :

and poles a sma V(i+rca
and since 0"argw >—~%, these are located somewhat as in figure 7. It follows that, in
displacing @t STT—iB)(which cuts the real axis at an angle of 45°) no poles are captured.

On the other hand, a branch-point may be crossed, and certainly is in the case of interest
when ijf is small (or nearly equal to 77 unless otherwise stated we assume without loss of
generality that MA77). Strictly, therefore, an integral round the corresponding branch-cut
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should be included; however, we follow the standard practice and neglect this contribution,
a procedure which isjustified either by the fact that has an appreciable imaginary part, or,
when this is not the case, by the fact that |« |> 1 (Ott 1942). Equation (12) may therefore

be written r
A(S, f)=-777r\ >{sin —a)} asada. (

It is now permissible to put a - 0in that part of the integrand which is £slowly varying’ in
the vicinity of the saddle-point. When f =0, the only factor of/
may not be applicable is that containing the pole at ir+ aB Hence

-jit r
w = iR . A AAfciA AL A
AS *) =i -IJTS”S%E['UT% /j'tsin”) coseci (M- a+«,)e"“s «cte, (J18)

where /[ (sin3) =- "y (1- (sina+sin«,)/ {sina+ 1y (I - 1. (19)

X XS2

X X
L

Figure 7. Singularities in the complex a-plane: crosses represent branch-points,
dots represent poles.

Finally, it can be shown (Clemmow 1951) that the integral in (18) is exactly expressible in
terms of the complex Fresnel integral
F(a)=eB e-iAdl,

Ja
with the result that

A(S,f) = iy2secK™-af)/(sin f) fTikSEini(*+aB}. (21)

This expression is essentially equivalent to the several different forms appearing in the
literature, for example, those given by Norton (1941) and Ott (1943). Since we are only
concerned with small values off, simplicity is achieved without appreciable loss ofaccuracy
by writing the factor by which the free-space field must be multiplied to give the actual

field * A= 1+{1- 4iyOr(y)}e-issR, (22)

where y = J{\kS) (sin f +sinaa), y0= J{\kS) sin
It will be recognized that —iy*is equivalent to the ‘numerical distance' as originally defined

by Sommerfeld (1909) for f =0, and that —iy2is effectively the generalized fol

by Van der Pol & Niessen (1931). Expression (22) is equally applicable to a point-source.
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3 2. Special cases
Several simple formulae which can be derived from the foregoing analysis will now be
given. These help to present a picture of how the field varies, and later we shall look for

parallel results in the mixed-path problem.

Our chiefconcern is with the case when both the transmitter and the receiver are on the
earth’s surface (a distance d apart); the measured field-will then be called the ground-to-
ground field, and equation (22) shows that it is given by

A= 21-2iy0T(y0} = 2A(y0), (24)

the function K(a) being that introduced in §82*2. When |y0|<‘1, A =2, as though the earth
were almost perfectly conducting; whereas, for |y0|> 1,
2i
Ji kdsin2
The derivation of (25) makes use of the asymptotic expansion of the Fresnel integral,
which has, in this case, to be taken to the second term. On the other hand, when the trans-

mitter and/or receiver are sufficiently elevated the first term suffices; applied to (21) it leads
to the field of ray theory, which may be written

A (25;

-ikR ..o -iks
Tm+p[sini)7TWy (26)

This result is, of course, that which would be obtained by removing the complete function
[I{sin (ir—ot}from under the integral sign in (17) at the predominant value —O0. The
precise conditions under which it gives an adequate representation of the field cannot be
put in a simple form, but a useful rough criterion is

%o0+y) IsinaB|> 1, (27)

where yand yee the respective heights of the transmitter and receiver.

Finally, we must introduce the height-gain function. The analysis of §3-1 seems to lead
to a more general derivation than that in the literature (e.g. Norton 1941). With some slight
transformations, the incident wave (8) may be written
_ Hit
V(2w 0
and the reflected wave (9)

liit
Hz=™ JJ M sin«)+/>(—sina)] cos[% 0+y) sina]

m cos {k §— y¥ina}e axwada, (28)

—i[yo(sina) — p[—sina)] sin [A({O0+") sina]
Using (6), combination of (28) and (29) gives the total field
all . . . cos2 Bn (kySind) sin  sin
TV ase®s  (pnacos  sin n2 1 sin2
cos2a\ sin [k(y0-\-y) sina] 1 2sin2

-ikd oos &
cos2a\ da  (30)

~nT)

nj( sma o
sinZa nﬂl
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When it is permissible to put a = 0 in that part of the integrand contained in the curly
bracket we have A= (1+i” oSinafi) (i + % sinaB) (31)

where HzZ0 denotes the ground-to-ground field. Since the height-gain factor in (31) is
perhaps most often considered with reference to field-strength only (e.g. Eckersley &
Millington 1939; Norton 1941), it may be as well to emphasize that it is equally applicable
to phase. It is not easy to judge precisely up to what heights it is valid, but our derivation
shows that a sufficient criterion, at least, is that which holds for a perfectly conducting earth

(sin% = 0), namely, A%H*/2) <kd. (32)

3 3. Sommerseld's method

The method outlined in 83T indicates the type of analysis which is used in the sequel.
There is, however, an alternative procedure, equivalent to that originally adopted by
Sommerfeld (1909), to which it also proves necessary to refer.

The substitution cosa = Ain the integral (9) gives

e U7 po A} M (33)

Provided that J (1 —A2) is defined as that branch with a negative imaginary part, the integral
in (33) may be evaluated by closing the path ofintegration with an infinite semicircle above
the real axis and appropriate detours round the branch-cuts and poles. It can be shown that
the poles of M{"/(I —A2} lie in the ‘upper’ sheet ofthe Riemann surface, and the singularities,
branch-cuts and path of integration appear formally as in figure 8.

Figure 8. Singularities and branch-cuts in the complex A-plane on Sommerfeld’s method.

An appreciation of the positions of the singularities relative to the path of integration is
necessary to an understanding of the subsequent analysis, and should be particularly noted
in view of a recent suggestion by Epstein (1947) that the latter ought to pass above the pole
at  P2In this way Epstein hoped to explain a discrepancy between an expression for the
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final solution originally given by Sommerfeld and all later versions. This discrepancy (a
sign error in the limit of an integral) was first pointed out by Norton (1935) shown by
Burrows (1936,1937) to be in amountjust the *surface-wave' term contributed by the residue
of the pole P2Epstein held that the subsequent controversy concerning the Gexistence ’ of
this surface wave had never been resolved, a view not unsupported by the text-books (e.g.
Stratton 1941, p. 585; Schelkunoff 1943, pp. 430, 431), and his paper inspired a number of
others on the same subject (e.g. Kahan & Eckart 1948 1949 1930, further papers
have appeared more recently). These have been criticized by Bouwkamp (19480, b, 19500, b,
1951) and it has been established that Epstein's suggestion is incorrect. The essential error
(in the present author’s opinion) made by Sommerfeld has, however, been overlooked in
this revival of an old controversy: namely, that (in the notation of his 1909 paper) he put
a = Jp when a2was real and positive, instead of —Jp, as his choice of branch-cuts in fact
demanded. This explanation was given by Niessen (1937).

3 4. Some distinctivefeatures of the analysis

With reference to the foregoing analysis, it is worth emphasizing several points, an
appreciation of which will help to clarify the subsequent work.

(1) A method of solution which is physically straightforward is to express the incident
cylindrical field as an angular spectrum ofplane waves, choosing a path ofintegration which
is such that the individual plane waves are essentially ‘down-coming’, thus avoiding any
ambiguity in deriving the corresponding reflected field. The resulting integral is con-
veniently handled by the method of steepest descents.

(2 The mathematics ofthe problem is characterized by certain poles and branch-points.
In distorting the original path of integration to that of steepest descents no pole is ever
captured; but a complication arises from the fact that one may lie very close to the
saddle-point.

(3 When the earth is homogeneous there is symmetry about the plane through the line-
source T and its image T' (figure 5). This symmetry expresses itself in the analysis by the
appearance oftwo relevant pairs ofsingularities, PIf Bxand  B2(figures 7, 8). The former

come into play when f = wthe latter when f =0.

(4) In Sommerfeld’s method of solution a different complex plane of integration is
adopted in which the poles Pxand Pappear in the upper sheet of the Rier
This procedure suggests that the residue of Pgr  contributes expl

such a separation is artificial and only due, as Weyl (1919) was the first to point out, to the
rather unnatural mode of attack.

(5) The solution is reciprocal in the sense that it is unaffected by the interchange of
transmitter and receiver.

4. The geometric mean formula

In this section we discuss the application to the mixed-path problem of the geometric
mean formula (mentioned in §1-2) with particular reference to its limitations.
Suppose that the transmitter and receiver are at equal heights h. From (31), the height-

gain function is then (1+itisin<xs)2 (34)



Downloaded from https://royal societypublishing.org/ on 03 July 2023

16 p. C. CLEMMOW ON

It is clear from (32) that there could be practical conditions, particularly if  were very
large, under which (34) is valid when

kgin
and it then becomes effectively —{khsin 2 (36)
In these circumstances the ground-to-ground field would be given by (25); an application
of (36) therefore yields the corresponding field when the transmitter and the receiver are

at equal heights hin the form __ e-iM a7
H7 " wEl

Now equation (37) has been derived for a homogeneous earth, but is independent of the
electrical properties of the ground. Millington (19496) therefore suggests that it should be
equally applicable to an inhomogeneous earth, and a reverse use of two height-gain
functions, appropriate to the respective media above which the transmitter and receiver are
located, then enables him to deduce the ground-to-ground field in this case; the result may

be written Hnz = J{HIzHZ), (38)
where Hlzand HZ are the fields pertaining to homogeneous earths composed of the above-
mentioned media, and HB the field for the composite path. Millington pr

geometric mean formula (38) with explicit reference only to ground-to-ground field-
strengths, but it is evidently likewise applicable to the complete field (including phase) at
all equal heights of the transmitter and receiver up to a maximum determined by the media
in question; and, incidentally, the hypothesis of transmission normal to the boundary may
be waived.

The fact that a linear differential equation leads to a solution expressed as the geometric
mean of two other solutions may appear startling at first sight, but it should be borne in mind
that the different fields are all (approximately) proportional to the same inverse power of
d, which is the only variable involved, so that (38) is simply a relation between the constants
of proportionality.

Millington’s recognition of the geometric mean formula plays a considerable part in the
development of his technique. In appropriate cases it fixes the mixed-path curve at
sufficiently great distances beyond the boundary, and together with the further reasonable
assumption that, to a first order, the curve for points up to the boundary coincides with the
corresponding curve appropriate to a homogeneous earth, gives some indication ofthe field-
strength variation. The point we wish to make here, however, is that use of equation (38) is
only justifiable in special circumstances. The present analysis suggests a criterion for its
validity, namely, that the transmitter and receiver should be large numerical distances from
the boundary relative to medium 1 and medium 2 respectively, speaking in terms of the
model of figure 1; in fact, that this condition is both necessary and sufficient is established
more rigorously in part II.

The limitations of equation (38) are perhaps most vividly brought out by noticing that
(37) is equivalent to an application of ray theory using an effective reflexion coefficient of

-1; for, from (26), this gives the field
A ikd :
Hz— {X-e-i&%=} (39)

7F)
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but since (32) must be presumed to hold, we have
k(S-d) =2kh2d<4l1,40)

and hence (39) approximates to (37); furthermore, p(sin 4= 1 if sin <51sin |, an
inequality which isimplicit in (35) and (40). In the problem which we are about to consider,
one of the media is a perfect conductor and therefore has a constant reflexion coefficient of
+1; in this case it appears most forcibly that no argument can be suggested by which the
field can be quickly estimated when the transmitter and receiver are on opposite sides ofthe
boundary in positions which are sufficiently near the earth’s surface to be of interest, and it
seems that convincing results can only be obtained by a thorough analytical investigation.
To this we now proceed.

5. The solution for an incident plane wave

This section is devoted to the problem in which the plane wave (4) is incident on the
interface depicted in figure 3; the affixp is dropped. The method of solution is precisely that
developed elsewhere (Clemmow 1951) in connexion with diffraction problems of a similar
type. The currents induced in the diffracting sheet give rise to a scattered field which is
expressed as an angular spectrum of plane waves, and this representation enables the
boundary conditions to be formulated in terms ofdual integral equations (Titchmarsh 1937)
which can be solved by the use of contour integration.

51. Theformulation in terms of dual integral equations

In the region 90the field of the incident plane wave is
fH1= (0, 0,1) eilcroos™“a), (41)
1EZ2—Z(sina, —¢c0sa, 0)  as(BW). (42)
If the perfectly conducting sheet were absent, this would give rise to a reflected wave
[Hr = /)(sina) (0, 0,1) eiZnussta), (43)
{Er= ) (-sina, -cosa, 0) ei* csO+a),
in the region 0, and a transmitted wave
fH* = r(sina) (0, 0,1) (45)
\ e *—Z'r(sina) (sina', —cosa',0) (46)
in the region y~0; where alis defined by Snell’s law
Acosa = losa’,

and the Fresnel reflexion and transmission coefficients are
Uina) = fina-iy (I-*)J/{sm a+iy (I-")), (48)

. . i 1 cos2a\)
r(sina) 2sina sina+ 2

When the perfectly conducting sheet is present there will be, in addition to the above fields,
a scattered field generated by currents induced in it. We express this scattered field in terms

(49)

Vol. 246. A 3

(44)
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of two angular spectra of plane waves, one for the transmission in free-space, the other for

that in the earth. For the half-space y>0 the non-zero field components may |
//>:(3° P(cOS/?) z-ikremid-M&P, (50)
C
<Ex= EB/?P(COS/?) e~ilcroos(<? ~d/?, (51)
Jc
Es—z €os/? ROs/?) e~
t Jc
and for the half-space y<0 as
Hzs=\ Qc0S"?) e-ik’idR{53)
a
Exs= Z's sin/?'Q (cos/?) n (54)
Ve
= Z'f cos £205s/?) e- ilc>cosfy+™)d.
< JC

A correct behaviour of the scattered field at infinity (outgoing waves) is implicit in these
representations. Furthermore, in (53), (54) and (55) /?" is some function of/?,and  cos/?)
must be expressible in terms of Bos/?). In order to satisfy continuity

y = 02" is clearly given by *s/? = A'cos/?, (56)
corresponding to (47); and again, the continuity of  demands that

—Z sin/?P(cos/?) = Z'sin/?'Q(cos/?), (57)
a relation which reduces correctly to P(cos/?) ——H(cos/?) when = 1. Substituting from

(56) and (57) into (53), (54) and (55), the components of the scattered field in the region
y .0 become

Hzs= -J* Ifo.fi)
< = —zs siny?P(cos™) e~itocosikysind/?, (59)
Ve
Eys = z s sinytfcot/?'P(cos/?) e - F*@B +i*>sin™d /. (60)

Jc

The complete scattered field is thus expressed in terms ofa single angular spectrum function

P (cosyd).
Now the total field is given by

Hz = Hz+H I+ H #for z/>0, (61)
Hz= Hi+
The boundary conditions which have yet to be satisfied are
()] Hz=
) Ex{—) = 0at =0, 0,
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Butaty = O, HE+Hr= Hi ailf+ Ex= 22*;hence, using (61) and (62), (I) and (I1) may
be expressed in terms of the unknown scattered field, being respectively replaced by
(" Hi=
(1m) Ex —
If we make the substitution cos/? = Ain (50), (51), (52) and (58), (59), (60), and also
write cos a—A0 (I ) and (IT) yield a pair of integral equations for -P(A), namely,
v (i-m Utl-"2"500 0 Apda= 0 for *<0, (635
Vo DV(I—AZ)?(l-AZhZ)
| U (i-4)y(i--t§/«2)
P(A) e_itoAdA = ei&d for *>0. (64)
U V(i- a8)+"V(i- a8«?

These are dual integral equations of a type considered elsewhere, and for 1they reduce
to those arising in the Sommerfeld half-plane diffraction problem (Clemmow 1951). Before
solving them it is worth noting several alternative formulations.

5 2. Alternativeformulations

It has been pointed out in a previous paper (CAemmow 1951) that the use of dual integral
equations in certain diffraction problems is an alternative to the use of a single integral
equation. The latter method has been developed by Copson (1946a, and a number of
American authors, and would be applicable in the present case. For a general solution of
equation (63), obtained by taking its Fourier transform, is

7(i->2+ I/(i-'i2’”Z)P

(A) = dfc (65)

where JX£) is an arbitrary function, to be identified, in this application, with the current
density in the conducting sheet. If we write formally

of" P(1-*1M (1 -**»%) il AAA= FAI ), (66)

the substitution of the value of P(A given by (65) into (64) leads to a single integral equation
for JX[E), namely,

1K\ Jxfg)<blk (O =D [ p— eito®  for x>0. (67)
Jo V (i-7)+ 2 |(i-Aif» 2
3-2
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As written, the integral in (66) is not convergent, but its interpretation is quite clear. For
consider a current element JJfc) dE, flowing in the direction, situated in the air-earth
interface at y =0, x = £ (the conducting sheet now being presumed absent); the field to
which it gives rise can be obtained by using the method of §3-1 in conjunction with the
appropriate angular spectrum, and in the region y> 0 the ~-component of E is found to be

—~w) dNJ* {1 —0(sin/?)}sin2/?ellmc o s d?, (68)
where rland 62¢e polar co-ordinates measured from =0, x £.The integral in (68
converges for any given value of din the range Its formal expres
(or is), which is (66), may be defined as the limit when ~->0 (or it). Alternatively, con-
vergence at 6% 0, 7can be obtained by a permissible distortion of the path C. Thus (68)
reduces to -\kZ J Wit<D(A | * - £
on the interface y= 0. The corresponding expression for at = Odue to a curren
occupying y= 0, &> 0is obtained from (69) by integrating over £from 0to 0o. In order to
satisfy the boundary conditions on the perfectly conducting plate, this value of Exmust be
equated (for b that of — 1 y—O0; ther

(67) is of the type susceptible to the method of Wiener & Hops (Titchmarsh 1937). The
Wiener-Hops procedure would be facilitated by the fact that the kernel <OA|x—£]) is
defined as a Fourier integral in (66), but this really emphasizes the irrelevance of bringing

into the analysis and indicates that the dual integral equations offer a more direct line
of attack.

Another slightly different formulation of the problem may be devised. So far we have
considered the.complete field in terms ofa “correction ’ to the field existing in the absence
of the perfectly conducting sheet. Now let us consider it in terms of a “correction’ to the
field which would exist were the conducting sheet infinite instead of semi-infinite. This
alternative approach (associated when n—1 with the exact electromagnetic form of
Babinet’sprinciple) indeed yields slightly simpler integral equations than those given above,
owing to the fact that we are dealing with a vertically polarized field; on the other hand,
the new ‘correction’ field has no obvious physical interpretation. If, then, the whole plane
y —0 were occupied by a perfectly conducting sheet, the field in the region > 0 would
consist of the incident wave (41), (42) together with a reflected wave

jHr= (0,0, 1) ehs70)
\Er = Z(—sin @
and there would be no field in z/<0. When the conducting plate only occupies the area
y = 0,2>0, there isan additional field which maybe cast into the form (50), (51), (52) when
y”~ 0 and into the form (58), (59), (60) when y<0. The requirement that the resultant

for the complete field should be continuous is automatically satisfied, and the boundary
conditions which remain to be considered, expressed in a form analogous to (T) and (IF), are

(" Hi+H'+H*. = Hzsat 0, x<0;
(IF) E{= Efi = Oatz/ = 0,x>0.
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These yield the dual integral equations
y(i-A2+ -NM(i-A >2
P(A) QHikgq = —2eifcd for xCO, (72;
I —AD) I (1 —A2w2)

J -coO f

P(A) e~icAdA= 0 forx>0. (73)

Again, equations (72) and (73) may be replaced by a single integral equation. The
Fourier transform solution of (73) is

P Yy @) 9
and substituting for BA\from (74) into (72) we get
k[ KxQkx- £])dE = - 2ei®& for ~<0, (75)
i " VA-M)+iIT(I-AV)
where ¥ (*1*-£ 77 1 eW*-DA&L (76)
] [(1-U)V (1-A 2 )

5 3. The solution

We now revert to equations (63) and (64), and proceed to solve them by the technique
given in a previous paper (Clemmow 1951).

The path of integration is along the real axis except for indentations below the branch-
point at A= —land above that at A= +1. A function which is free ofsingularities and zeros
throughout the region above the path of integration, and of algebraic growth at infinity
therein, is denoted by U; a function with the same properties below the path of integration
by L.

Then a solution of (63) is

m/(1-» +UU-A 2%

P(I) = U(k), (77)
-V (i-72V (i--t>2)
where the left-hand side has been written in a form which reduces to P(A) when —1
A corresponding solution of (64) is
1 m
P(A) (78)

2mV (1 —Ag)+ U (1 - Aoh2)i & A°) A +A0)”

provided that the path of integration is indented the pole at A—A0.

The elimination ofP(A) from (77) and (78) makes it clear that the crux ofthe problem is

the expression of 1
V(I-A2+"V (I-A 271D (79)

as the product of a ~/-function and an L-function. The explicit factors could be obtained
from the general Wiener-Hops theory, but they would seem to be too complicated to be of
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much use here.* However, this difficulty is circumvented in the subsequent analysis, and
so we merely write

S AUQNT A2 LT(L-AUDY = LTLTIW AW, (8°)

without, for the moment, inquiring further into the nature of £7YA) and ZJA), except to
note that £§(A) = Z J—A); the particular form of equation (80) has been chosen to make

t/j (A and ZJA) reduce to unity when n= 1. The solution of equati
seentobe
_ . (81)
m = 2ffiZi(AQ) ZJA) (A+Aq
where we have applied the result U0 =
Pi r\— A
(cosA) ™ 7™(cos pLx(cos'Jp cosa + cos/7"

At thisjuncture the opportunity may be taken to interpolate two remarks concerning the
nature ofour result. First, it isto be noted that (82) reduces to the correct expression for the
Sommerfeld half-plane problem when n —1; this check is parti
firming that the solution has the right order of singularity at the origin, as the question of
unigqueness is one that demands some attention in diffraction problems (Bouwkamp 1946;
Meixner 1949; Copson 1950; Jones 1950; Glemmow 1951). Secondly, we stress the obvious
symmetry of (82) in a and ft;as will become quite evident shortly, this symme
mous with the reciprocity criterion, and it is worth convincing oneselfthat it really demands
the factorization expressed by (80). By comparison, we may record the failure, in this
respect, of the solution suggested by Raman & Krishnan (1927) for the problem of the
diffraction of a plane wave by an imperfectly conducting sheet; the method proposed by
Pidduck (1946, 1947) is likewise at fault.
The scattered field is given by (50), (51), (52) or by (58), (59), (60), according asy is
positive or negative respectively, with the value (82) for jP(cos . The complete field is then
determined by (61) and (62). Thus, fory> 0,

Hz = eilcas c~a>- [Hin ilaosM ) + 1Z, (83)
i cosja C cost/? itra, (F-»H?-

where 7 Lgcosa)J Q_¥os J¢osft+ cos a)

and for z/<0 Hz= r(sina) eikrcos@ a)4- (85)

where = j‘ , s Y (86)

til * oosoc) Je smp L™ cosp) (cos/; + cos a) r
The corresponding expressions for Ex Ey,and Ex, Ey may

manner.

* Senior (1952), in considering the rather similar problem of diffraction by an imperfectly conducting
half-plane, has in effect worked out the ‘split” for 1/n+ A2 which is a valid approximation to (79)
when Inl 1 (see §12-2).
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6 4. A transformation of the solution

In the propagation problem the field below the earth ssurface is generally of no concern,
the subsequent discussion is therefore confined to the region z/*0.
Following a common practice in diffraction theory, our first aim is to separate the
expression (83) for Himto the sum of a geometrical optics term and a diffraction term, as
discussed in 82T. To this end, the path Cin (84) must be distorted into »&{, the path of
steepest descents ; a knowledge ofthe nature and location ofthe singularities ofthe integrand,
in particular of I/L"cos/?), is therefore necessary.
Since the functions  and Zg are defined by (80) in terms of A it is desirable, for the
moment, to revert to the complex A-plane. Referring to 83T, equation (16), the poles of

(80) are given by A= +n/J(l+n2), (87)

the upper and lower signs corresponding to Pand  respectively in
confronted with a slight difficulty. 1f in the complex A-plane we adopt the branch-cuts
appropriate to the relations A= cos/?, 7 (1—A2) = sin7, as shown in figure 9 (7 (1—A9
positive real part), the poles given by (87) do not appear in the upper sheet of the Riemann
surface; this is evident because the upper sheet in the A-plane then maps into the region
0<”/?<T7rin the 7-plane, and Pland PBe outside this region (figure 7). On't
in order to determine which pole belongs to 1/UfX) and which to 1/LfX), it seems necessary
to bring them into the upper sheet of the Riemann surface; this is achieved, as indicated in
83-3, by introducing the branch-cuts shown in figure 8. For the moment, therefore, we must
think in terms of the technique of closing the path of integration with an infinite semicircle
(corresponding to Sommerfeld’s original procedure for the homogeneous earth analysis),
although this is not the most suitable approach, and not the one which we shall eventually

use; itis then clear that the pole Phkelongs to 1/Uj (A) and the pole P2to 1jLx(A). W
to the branch-points of (80) the matter is of course quite straightforward; the branch-points
at +1, kblong to UfX) and those at —1, to Zq(A).

w . e A

fa

Figure 9. Singularities and branch-cuts in the complex A-plane on the present method.

Having established the above results, we revert once again to the complex /?-plane.
Referring to figure 7, the relevant singularities of 1/Z1(cos7) are the pole at P2and the
branch-point at B2 In distorting the path Cinto the path S(6), the pole at  will never be
captured, but the branch-point at B2will be crossed when 6 is sufficiently large. If the
present analysis be compared with that previously given for a homogeneous earth, it will
be remarked that the singularities at P2and B2play much the same role as before, but that,
in contrast, there are no longer any singularitiesat and  This is what might have been
expected from simple physical considerations. For a homogeneous earth, the presence of
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singularities at Pxand Bxn addition to those at and corresponds to the sym
the configuration; in the mixed-path problem, however, this symmetry has disappeared.
The effect of the lack of symmetry can, indeed, be brought out more explicitly by a crude
interpretation of the diffraction field as some sort of edge-wave emanating from the dis-
continuity at the boundary. When @inearly equal to the field of thi
transmitted over an imperfectly conducting region of the earth’s surface, and we must
therefore expect features corresponding to the homogeneous earth analysis of §3T to present
themselves; they do, in the guise of the distinctive singularities at  and On the other
hand, when 6 is nearly zero, the field of the edge-wave has been propagated over a surface
ofinfinite conductivity, and consequently it is equally to be expected that the analysis should
not be appreciably affected by any singularities.

It has been shown that the distortion of the path C to the path S{6) will, in certain
circumstances, capture the branch-point at B2 and an appropriate branch-cut integral
should then be included in the rigorous solution; it is, however, legitimate to neglect this
contribution, thejustification for such a procedure resting on essentially the same argument
as that suggested in the corresponding stage of the analysis for the case of a homogeneous
earth. On the other hand, the poles of the integrand of (84) given by cos/?+cos a = 0 must
be considered; these poles play the same part in the analysis as they do in the simple
diffraction problem to which the present problem reduces when —1; since the case when
n= 1has been treated elsewhere by this method (Clemmow 1951) we need only note here
that the residue of the integrand at /?= t—owuld, if the pole were

contribute the term
piAe cos(0+a)

______ L fcos T = {I-yo(sina)}eiwgaﬁc@s%

It is then apparent, from an examination of the different cases, that the field in the region
0, given by (83) and (84), may be written

JJ s (0-a) | gifcr cos j (89)
where Hd="' 0081* f e-itocoste-Wiftf (90)
Z T7Zj(cosa)J BA(cos fcos A+ cos a)
d 1 for 0< #< 7—a,
an (O(sina) for m—a<~<77. (91)

The first two terms of (89) give the expected field of geometrical optics, and (90) is the
corresponding diffraction field.

As far as we are here concerned, the solution associated with an incident plane wave
merely serves as a link in the analytical chain, and it is not accorded an independent
development. We need only remark that the integral equation approach, in contrast to that
attempted by Hanson (1938), yields the answer in a compact form which is particularly
suitable for conversion to that appropriate to a line-source. This procedure is carried out in
the next section.
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6. The solution for a line-source

61. Thegeneralform

In the model of figure 3 we consider a line-source T situated at (r0,60 which would, in
free-space, propagate the cylindrical wave (3). Again we express this primary field as the
angular spectrum of plane waves (8), and the complete field is therefore obtained on

multiplying (89) by the factor in
p% J ( ) by T e-i/crocos(0o-«) (92)
V(znm)
and integrating with respect to over a suitable path. It now proves convenient tc
path as §(*7i) rather than C,and the result is
it 1 jpiArcos(d—a)_i_j |piArcos(0+a)le~iAr0cos (Qo-cc)fa j
Z V(2»)J«.,)V \V I V(2”)
where W/ given by (90), the superscript p being reintroduced to distinguish the field

associated with an incident plane wave.
The next step is to express (93) in turn as the sum of a geometrical optics term and a
diffraction term; to which end the path of integration for din the second integral of (93)
must be displaced to that of steepest descents, S(0Q. This procedure is natural from con-
siderations of symmetry, and is identical with that demonstrated elsewhere (Clemmow
1950¢) for the simpler case when n—.
In displacing the path we must take into account the singularities of H*dregarded as
a function of aFirst, there are the singularities belonging to ; the poles of this
function lie outside the region between S(0) and ,and hence are not captured;a branch-
point may be crossed, but again the associated branch-cut integral is permissibly neglected
(indeed, of necessity, to keep the approximations consistent). Secondly, the integrand of
(90) has poles in the complex a-plane at cos @&——cos/?; W f therefore
relation where ftassumes all values on the path S(6), and it is the contribution of their
residues which combines with the first integral in (93) to yield the geometrical optics term
of the solution. Indeed, the residue of

I._cos p cos C—oos0n— (%9
tlx(cos @x(cos/?) (cos/?+cos a)
at the pole (0= t=—?is
I ___sint/?cos 7V? el OCO8(«O+HwW _ _L_|i —~(sin/?)} eiloe cosN 0+ (95)

inL f —cos/?) Zg(cos  sinydl
Thus we may write (93) in the form

Hz=m+m, (96)
where
V (k) A{HA(KR) +HA(kS)} for O<#<77 —#H0,
-it f
J{\te-*i"/1<2AH +AP7 N /2(sina) eiAbos® +a)Jda(;1 for =—R0< "< 7 (97)
and
m - S S ——————— a Q06\ --—-  e”iMro cosCSo-"+r cos dytfda.

m J(2rr) JSM)JSOL (cos o)L kcos/r) (cos}:,it + cog/f))

Vol. 246. A 4
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The geometrical optics term (97) conforms to expectation, the two expressions involved
being the respective fields appropriate to a perfectly conducting earth and an imperfectly
conducting earth with a Fresnel reflexion coefficient (sin If we introduce the notation
of 83T, (97) appears in the more compact form

Hi-- V(i") e-“"{W (kR)+Hj»kkS)}+ Q A(S,f), (99)
[0\  so for 0<"<77 —0Q
Where (h =Vv for,-00«S<*, (100)
It will be observed that the solution is reciprocal in the sense that it is unaltered by an
interchange of rQ, 6and r, 6.
62 Asimplification
The essential complication ofthe mixed-path problem lies in the evaluation of the double
integral (98) for Hdthis is the diffraction field which smooths out the discontinuity in
geometrical optics field (99), and is obviously of major importance in the cases of practical
interest for which 2+ Qis near tt. The immediate obstacle to progress is:
expression for L fcos aysavailable. We can, however, introduce an initial sir

adopting the powerful arguments associated with the method of integration by steepest
descents, and shall shortly see how this resolves the difficulty.

The predominant values of aand
are large it should be permissible to put @ 60,
which are ‘slowly varying ’ in the neighbourhood of these values. As far as the author is
aware a rigorous mathematical treatment of this process applied to a double integral has yet
to be given, but the required extension of the standard justification in the case of a single
integral appears sufficiently straightforward to warrant no hesitation in its use.

In preparation for this procedure we write

Utcos a@L(cosa) = Uficosoc).
where, from (19), Uficosoc)Z2(cosa) = —2//'(sina).  (102)
Now the pole Plis given by sin®(a+ aB = 0 and the pole by cos|(a— = 0 (see
figure 7); hence the single equation (101) implies the pair of equations

Ufcos oc— U2(cos @) sin ocA-aB), (103)
LficoSoo= L2
Furthermore, the only singularities of (102) are the branch-points at cos and
cos @= —, the former belonging to l/t/2(cosa) and the latter to I/Z2(cos ; thus, both
1/U2(cos @) and 1/Z 2(cos Yae ‘slowly varying ’ for values of near Oor
It is therefore reasonable to suppose that an adequate approximation to (98) is
lid _ e*g |
z ) (2t)Z2(cos 60) L2(cos 6)
X S S ————— e a5gg OB 2 / ----m-mmmm e
Jsoo)J80SI (a—  cosf(p—aB) (cosa+ cos/?) r
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This is conveniently written in the form

. eiin 1
= U tff + tff), 106
H] 4777 (217) Z2(cos cos ( ) (106)
where
- sec|(a+ #o—aB sec|(/?+ sec  — —6) e~ik(rocosa+r cos$
Js5(0)1 s(0) (107)
Hf s F seci(a-h"0-afi)seci(y?+~-afiysec|(a+y?+/?0+")e" i&roCOsaHcosH)dac
35(0)Js(0) (108)

The main task of the next section is to express the double integrals (107) and (108) in
terms of single integrals which are suitable for computation. But even when this is achieved,
the solution still requires, as (106) shows, the evaluation of

Z2(cos#0) Z2(cosl). (109)
For general values of 6 and 6this would be a tedious process. However, if#+ #0= 77
becomes Z2(cos#0) Z2(—cos#0) = (HO)
which is easily calculated from (102). The condition caters for our chiefinterest,

which is in the ground-to-ground field when the transmitter and receiver are on opposite
sides ofthe boundary; moreover, it allows us to check the validity ofthe height-gain analysis
in the mixed-path problem, which may therefore be used to some extent to derive the field
for an elevated transmitter and receiver.

7. T he reduction of the solution

71. The reduction of HEl when =0, =77

The discontinuity in the diffraction field across (figure 4) arises from the expression
Hdwhose reduction we consider first. We start by treating the case for which  isjust less
than 7and 6just greater than O, so that the transmitter is situated over the imperfectly
conducting ground and the receiver over the perfect conductor; since the answer is strictly
reciprocal the results are immediately applicable to the case =0, =77. It may therefore
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be assumed that | 6—aBis small; consequently in (108) the poles of the integrand given by
cos \f-\-d —af) 0 are not near the predominant value /2= 0. Thus, it is permissible to
write
Hd2—sec \(0—as) sec™(a+#0— Nb)ec|(a+/?'TH#O0+ #) e~ilc(rocosa+rcos™dad/?. (

J§(0)j §(o)
In (111) make the steepest descents substitutions
£=,/2 e~#inla, 1= J2e-ii7rsin|/?,

and neglect, where appropriate, £2, ¥2, £/, and higher-order terms in £and  This gives

A fx—ikRi

Nz _
B sin \— aByin|(#+ 60)

Yoo t*ee g —k(ro8§2+n/2
| 72 e~iivvcot\<0Q' aB)} {[T-72 e"*mcot| +00)}d/\ A ].
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where Rx= rO+ r. Next, make the polar substitutions

£=V W ro cos& (114)
Then

Hd2= "JJJRJ e~ikRIsec"(d —aBosec |r(#0—af) cosec|(# + #0)J e d/h (115)

12rQ)

where J(/?) =J j>cos™—e cot|(# 0 “B

X cos *1sin —e iIr~Zl_ol cotlr¢9+ #0)) d*. (HDb)

T(>) can be evaluated by a standard technique, using the substitution z —exp (i”*). This
substitution gives

J(p)=- im;rcilte(ZZ-ZaZ/yO+ ) - 2577+ C)y EY/NT (117)
where a—e™* /oA CotU00 -af>
A= JI/RI-1JIIRY, (118)
B = e-lin £ p EOE(fl + fl0).
The poles of the integrand of (117) are
z, = {a+iV(2)2-« M0, z2= {fa—imJ(P2" al)}IP> (119)
and i /q « B2 (12°:

>VyiV (~C)

Sincez1z2= land |Z1Z2| —1,one and only one ofeach ofthe pairs (119) and (120) lies within

the unit circle. If J{p2—a2and J{p2—B e defined
real parts, it is not difficult to show (when p is real) that the poles within the unit circle are

z1Z 1for #+ #0< w, and zI5Z2for 6-\-60> tt Now write

If_ |(_4|_ h—h —|— - J wit az, 2| z—=z: 2—9]21)2—22

1z . for™ + "< 7T, (122)
so that IH{p)=\
[2u(P1-\-P2) for #+ #0>T7r. (123)

The following results can be obtained:
Pi=-1J(RJr0Q/{J(p2-a2 [J(p2- a2 +aj[rIr0)"B (124)
Pi=iM M W -S 2[V(-2-S 2+«VWA0) -SV(>-/r0)]}, (125)
P2= 1J(RilrQIU(p2-B 9 U(p2-B2-aJiRM +BJ(rjrO]}. (126)
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Hence, from (122) and (123), we have

Jp) = 2™ Jyo foo- S2)~[+/(/"2- t ABj-
with the upper sign for d+ 60<7dad the lower sign for
From (115), therefore,
Hf = 87rie-i0lsec|(”-aB cosec|(tf0-a B cosec  + (128)
where
p t-kRip2dp pe-M~*dp
l ;
2 s) taVOTER A 2«(/~J+HVI0-S7
(129)
with the upper sign for d-\-Oo#&nd the lower sign for In the first and second
integrals of (129) make the respective substitutions
| = J(p2-B 2a=V(/>2~«2); (13°)
then J__e-Mis2 = 1AZA ~sRa2?® € LIRAA (131
mo VI Vio jJ +ak BIR
with the upper sign for #+ <Cetand the lower sign for The individual integrals
in (131) have the unpleasant feature that they diverge if — = 0, but itself does not, as

the following analysis shows. Consider the transformation

o LD = edamiemery and 7
AL -dA =e-" 4? =€ 2ATR)EN Nd AL 132
llia @9 aiV(an) A %iaf& p (132)

The second term on the right-hand side of (132) is finite at a = ft = 0; the first term is not,
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but it depends on oad yonly via the combination : 2:y:12. Applying the transformation
(132) to each expression in (131) the two contributions which diverge for = —0 cancel
out, and so _
. . e -kRiX2dA
7= T (aly —BJ Jje-"is2
2 AT
R. -kRiX2dA
al--B /— f' (133)
( v 5, A—la | - —BS\V

with the upper sign for #+ #0<7r and the lower sign for 6-\-60> tt
His given by (128) and (133) in essentially the reduced form which we have been
seeking.
7*2. The reduction of H f when

An expression for H finterms oiH f is easily obtained. From (107), using the approxima-
tion corresponding to (111) and substituting —#?for /?, we have

=sec "(0— J ! — "p)sc M(a+/?+
Hf =sec”(0 O%(O)JJS(O)SeC (a+ #0 b)sc N (a+/?+#0—
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A comparison of (134) with (111) shows that

cosi (g-aBHf(rOr, 6)= cosh(O+as)H?(rQr, 0Q - 6). (135)

The interpretation of (135) requires a little care; for is represented by

different functions in the two cases 6Q\-6< .tt, whereas
values of 6end 6btween 0 and

obtained by substituting —6 for 6 in the expression for /Zip (rQ, 6) appropriate to the
condition 6Q\-6 <tgpper sign in equation (133)).

73* 1he @ 7 %M
The case when the receiver is on the same side of the boundary as the transmitter is very
quickly dealt with. For points well away from the lines and it is

permissible, to the required order of approximation, to put a= /2= 0 in the factors
sec§(<%—?+#0—6)and sec §(a+/?+#0+ #) in the respective integrands of (107) and (108).

The procedure is comparable with that in ordinary diffraction theory 1) which leads
to the edge-wave approximation for the diffraction field, and which, for a primary line-
source, is valid in a region outside two hyperbolas whose axes are + = and 6—60= t

(Clemmow 1950c¢). It gives

Hf+Hf="~ + 2~ £ /Y0 s0)seck “m0- *c 1(/?2+'9-*,) «.»,daclA

(136)
The double integral in (136) could be reduced to a single integral by the method of 87-1,
but the factor preceding it is so small in practice (vanishing for or 6 equal to  that the
whole expression may be neglected. In other words, for positions of the receiver between
the transmitter and the boundary, only the geometrical optics term contributes effectively
to the field, which is therefore virtually the same as that pertaining to a homogeneous
earth.*

7. Continuity of thefield across 6-\-d0=

No attempt will be made to get numerical results for arbitrary elevations of the trans-
mitter and receiver directly from the formulae given above, and in the next section we
proceed to a discussion ofthe ground-to-ground field. It is, however, desirable to check that,
in the general case, the solution is continuous across =  particularly in view of the
fact that the subsequent analysis centres on an examination ofthe field at points on this line.

The discontinuity in the geometrical optics term (99), found by subtracting its value at

0+ 0o= n—efrom that at 0+00= ir+ where e->0, is
b
IfE =A (437)
—Tt—

It is not difficult to show that (137) is balanced by the discontinuity in the diffraction term.
This latter arises solely from the first expression on the right-hand side of (133); in fact, using

(118) and noting that B-0on0+ —
l 2J 2e~iincot |(#0—dB e - kRIA?
~Iirco
0 <7y,0 A2+ 2icot2i(00-a B) M (138)

Feinberg (1946) gives a second-order correction term in this case for the ground-to-ground field

is cont
it.9Nce
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The integral in (138) can be expressed (exactly) in terms of the complex Fresnel integral
(20) (Ott 1943; Clemmow 195s); we have

/ 2Je  eif { J ( 2kRIcot|(0o-af)}  (139)

and this can be legitimately replaced by

Va
2jire fin ) Hcos(140) \QO afi)}

to the order of approximation to which we are working. The corresponding discontinuity
in  Hds now obtained from (106), (128) and (140). Itis

2V2i e .
M T  cos™0—as)Z2—cos/9) B F{J[Zhag%) +aB}
= _\(S,6), using (102) and (21). (141)

We remark that the necessity here for replacing (139) by (140) only arises because, owing
to the greater complexity of the analysis, our method of approximation in the mixed-path
problem has been slightly less refined than that adopted in the case ofa homogeneous earth.

8. Transmitter and receiver on the earth’s surface

8T . The general expression

The analysis of 87 is now applied to a discussion of the ground-to-ground field.
We consider first the case in which the transmitter and receiver are on opposite sides of
the boundary. Then

0=0 00=TE (142]
and, from (118) a= e~iiiM(2rd</)tan|ai 0. (143]
In view of the remarks concerning the interpretation of (135), it is convenient to use the
formulae appropriate to 0+ 00= t—eq->0), so that = Hd2 The geometrical opti
term is thus
7 Ikd)" (144)
and the diffraction term, from (106), (128), (133) and (102), is
Hi = —4d(2/4) e-ii7rtan (145)
where fekd
F=— % Wgmigitany W
+ eI (zf)'tan AmZilcrOtanZ\uﬁleiIV(zrdcotaniaBAH 2i(r/-ll;()jxtzan2 dA  (146)
Now the first term in I is minus a half of (138) with = From (141), therefore, the
corresponding term in Hdis A(d, 0). Hence the complete field is given by
H, = %‘i{s‘_{ﬁgg +A(d, 0) +HE (147)

geiim /%00 p-iA2

where jAAKkr) (148)
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The first two terms of (147) represent the field which would exist for a homogeneous earth,
that is to say, in the absence of the conducting sheet; the scattered field generated by
currents induced in this sheet is therefore given by as the notation implies. Formulae
(147) and (148) are applicable when the transmitter and receiver are on opposite sides of
the boundary; ifthey are both on the same side of tffloboundary the diffraction field is to be
neglected altogether (as shown in §7-3).

At this stage it is convenient to introduce the parameters

ro=V(P~"sinas> (149)

7<= V (ProysinaB (15°)

The former appeared previously in the analysis for a homogeneous earth (equation (23)),

—i ylbeing the ‘numerical distance ’ of the receiver from the transmitter; correspondingly,

—iyltis the enumerical distance * of the transmitter from the boundary. As might have been
anticipated, the quantities (149) and (150) turn out to be the natural ones in which to
express the present results; they may replace, respectively, the essentially equivalent forms
J {2kd)tan (faB and J(2krQtan (p s) which are explicit in (148), the slight dis
being due to the method of approximation.

For the sake of brevity we also write

K{a) —1—2i (151)
fco ) - 1Al
asin (24), and BF beR] ~g-ppdA.
Now let Abe the factor by which the free-space field must be multiplied to give the field

in the presence of the earth. Then our results for the ground-to-ground field, when the
transmitter is situated over medium 1, may be stated thus:
for points on the same side of the boundary as the transmitter (cf. (24))
J = 2K(79; (153)
for points on the opposite side of the boundary to the transmitter
§opiite
p A— 2-K(yO)+  ToN7o/> (To~Tod}
The formulae (153) and (154) can be assumed to be independent of the nature of the
(vertically polarized) transmitter. The whole analysis could certainly have been carried
through for a line-source with a polar diagram other than circular, and the same results
obtained. But more important is the contention that (153) and (154) are also applicable to
a point-source, giving the field variation in any direction which is not too oblique to the
boundary, provided all distances are measured along the appropriate radius from the source.
The belief that this is so is based on an examination of the known solutions for a dipole
transmitter in the simpler, allied problems of propagation over a homogeneous earth (8s)
and diffraction by a perfectly conducting half-plane (Senior 1953); and is supported by
Feinberg’s (1946) analysis.
8% . A special case

The significance of (154) is most readily appreciated by considering the conditions under
which some simplification is possible.

It can be shown (Clemmow 1930-) that it is permissible to put Aequal to its lower limit
value, namely, y in the non-exponential factor of the integrand provided that |yO||>L In
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the case, then, for which the receiver is a large ‘numerical distance’ from the transmitter
(relative to medium 1), (154) becomes

A kdsine  aIT (159)

From an inspection of (155) we can follow qualitatively what happens as the receiver
starts at the boundary and proceeds away from the transmitter and off to infinity over the

perfectly conducting sheet. When J(r/d)ssufficiently small, the first term, whic
the field in the absence of the conducting sheet, predominates; in fact, (153) and (154) give
a smooth transition across r —0, although the asymptotic approximations on whicl

based can only be expected to apply at distances of greater than half a wave-length, say,
from the boundary. But since the first term is itself small, the second term very soon takes
over, and consequently there is a rapid increase of field-strength with distance in the region
just beyond the boundary, a recovery effect. Finally, when J{rjd) 4=1, (155) becomes

effectively A=t {ef_i"E(y & (156)

in this last case, therefore, the field is equivalent to that of a transmitter in the presence ofan
infinite perfectly conducting sheet whose power and phase are modified in accordance with
(156); a result which confirms the obvious supposition (P. P. Eckersley 1930; Millington
1949 b)that at points sufficiently remote from the boundary the rate of attenuation must be
characteristic of the relevant medium.
We are assuming |yo |$>1 ; hence, when hris relatively small |yd| must be large, but as

krincreases this is no longer necessary and so (156) is applicable for virtually all values of
yto; in particular, it may be noted that (156) reduces to = 2when = 0, implying, as
would be expected, that the field is unaffected by the imperfectly conducting medium when
the transmitter is sufficiently close to the boundary (though, again, the results cannot be
granted quantitative recognition unless k> 1).

8-3. A numerical example

In illustration of the foregoing remarks we take a simple numerical example which has
been considered briefly elsewhere (Clemmow 1950 a). The most interesting effect to demon-
strate is the field-strength recovery, and to emphasize this feature we choose medium 1 to
be a pure dielectric with sinog = | (corresponding to a dielectric constant of s), although
the conditions of the problem are then such as would scarcely be met in practice. If we
assume that ro = 300A (where Ais the wave-length), yGs from (150), isjust greater than 10,
a value certainly large enough to allow the Fresnel integral in (155) to be replaced by the
first term of its asymptotic expansion. The complete field is thus given by

N = for d<r- <157>

A~ ~«kds i n V ,fid)sinaB ford>r® 158
with the reservation that these expressions are not applicable for points inside a region about
a wave-length in width centred on d—

Vol. 246. A 5
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Figures 10 and 11 show, respectively, plots of field-strength and phase against using
(157) and (158) in conjunction with the values ofsin  and rOgiven above. The graphs are
appropriate to a point-source, and the corresponding curves relating to a homogeneous
pure dielectric earth with sin @B —and a perfectly conducting earth a

distance (wave-lengths)

Figure 10. Field-strength (in decibels above an arbitrary level) against distance (in wave-lengths)
from the transmitter [a)far a homogeneous, perfectly conducting earth forat
pure dielectric earth (sin <B= ), (© for pure dielectric earth (sin —
lengths from the transmitter and perfectly conducting earth beyond, by the present method,
(d)for the conditions as in (c), by Millington’s method.

distance (wave-lengths)

Figure 11. Phase (in degrees, relative to that of the free-space field) against distance (in wave-
lengths) from the transmitter (a)for a homogeneous, perfectly conducting e
geneous, pure dielectric earth (sin <B= A), (0 for pure dielectric earth (sin —A up to 300
wave-lengths from the transmitter and perfectly conducting earth beyond.
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Referring to figure 10, we see that the initial recovery of field-strength is extremely rapid;
when r = Ait is 3-4 dh above the value at the boundary, and this figure rises to a local
maximum of 13-7db when r = 1301 The mixed-path curve obtained by Millington’s
method (shown dashed in the figure) lies remarkably close to that given by (158); the details
of this agreement are examined in 81o.

The phase plotted in figure 11 is that relative to the phase ofthe transmitter in free-space;
here again there is a rapid climb just beyond the boundary, which means that the phase
velocity in this region greatly exceeds that of free-space propagation; it is also interesting
to note that the final asymptotic value of the curve, —$u; lies half-way between that
appropriate to a perfectly conducting earth (namely, o) and that appropriate to a homo-
geneous pure dielectric earth (namely, —u).

9. Elevated transmitter and receiver
9-1. The application of ray theory

In the case of a homogeneous earth a particularly simple result with an obvious physical
appeal is that of ray theory, given by (26). From the nature of this formula one might at
first sight be tempted to infer, with respect to the mixed-path problem, that geometrical
optics would be adequate in those regions governed by ray theory not in the immediate
vicinity of 01 (figure 4); but this is by no means entirely the case in the sense in which we
have used these terms. Referring to the inequality (27) we note the perhaps rather surprising
fact that the validity of (26) depends only on the combined heights of the transmitter and
receiver, and not on the angle of elevation  in consequence, ray theory may easily have
practical application in ground-wave communication, and furthermore, as stressed in 83,
may sometimes be linked with the height-gain function. On the other hand, it is well known
that geometrical optics can only give a reasonable approximation at large angles of diffrac-
tion, and generally speaking these fall outside the limits of interest in the propagation
problem.

For a perfectly conducting earth, the exact result is given by ray theory with a reflexion
coefficientof + 1. It istherefore reasonable to suppose that there will be some approximation
in the mixed-path analysis which is valid when the inequality (27) is satisfied, although,
from what has just been said, the complications associated with diffraction must still be
expected to remain. The approximation is not hard to find; it consists of putting a —

ft —6 inthe factor {Lfcosa) fosi2)3-1 In
matically analogous to putting a = o in the function //{sin (p-oc)} in the integrand of (17),
which was seen to lead to (26) in the case of a homogeneous earth; it defines our use of the
term ‘ray theory’ in the present context.

Making the above-mentioned approximation, the diffraction field becomes

m=_~"I 1 s f cosj(«+PAB e-l«,,cos«trcos<dM,,d/? n so)
z (2107, (cos(,) 71(cos 8)JJ0J Spo)cos (a+s,,j + CoS IfirC)
If medium 1 were free-space (n=1),

problem is known. Referring to some results given elsewhere (Glemmow 1950C), it can
therefore be deduced immediately that
7(2/-,) e»» F7{7@,-m . -S)}) d 60\

‘* m 7,(c0s007,(cosO)l 7««1 +%*)} {*(K,+ S} | )

the integrand of (9¢

Lwould be
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with the upper sign for 6 6 gdtad the lower sign for The correspond
geometrical optics term is, of course,
e for 0-\~d)
Tw )+ 7Tw> . (161)
o " for 6-\-6g>

W ) +p[Ani)IW)
Again, it is easy to check that the total field is continuous across #+ 0o=  for on this line
(160) clearly reduces to

§_(j —nfsin#))!— /- eiir )1 — )e-in

(162

with the upper sign for d-\-60= w—and the lower sign

the discontinuities in (161) and (162) are indeed seen to counterbalance one another.

Formula (160) emphasizes the diffraction nature of the problem. The factor contained
in the curly bracket is readily computed, being expressed in terms of Fresnel integrals whose
arguments are real, but the necessity for evaluating  still presents a stumbling block, as in
the general case. We have seen that the difficulty is avoided if we accept the condition
6 Og—77 and by this means we shall be able to link the field ofray theory with the ground-
to-ground field via the height-gain function. But before proceeding to a discussion on these
lines in §9-2, a further possible simplification is worth mentioning.

It was pointed out in 84 that ray theory can sometimes be used in conjunction with an
effective reflexion coefficient of — ; that is to say, the reflexion coefficient is virtually inde-
pendent ofthe angle ofincidence over the range ofangles involved. This suggests that, under
suitable conditions, the factor (Z1(cos
of 68nd 6and given the value 2, as indicated by (80). It isinteresting to note that this would
lead to precisely the same result as the rigorous solution to the problem of two line-sources
at T and T'in the presence ofthe perfectly conducting sheet but in otherwise free-space, the
source at Z being associated with the primary wave (3), and that at T' with the primary wave

Hz=-JIm*H ® (kS). (163)

It is, indeed, reasonable to suppose that, in the particular circumstances now assumed, this
model will furnish a good approximation to the solution of the mixed-path problem in the

6QZcos #)3-1 in (160) might be assumed indep

appropriate region above y= 0; for it gives a continuous field which is clc

taining to a homogeneous earth of medium 1 for points on the same side of the diffracting
edge as the transmitter, and which satisfies the boundary condition on the perfectly con-
ducting sheet. An extension to this point of view is mentioned in §18.

9 2. Height-gain considerations

It is natural to suppose that the use of a height-gain function is valid under certain con-
ditions in the mixed-path problem. A numerical example now to be given shows that this is
indeed the case, the procedure being to link the ground-to-ground field with that of ray
theory. An overall check on the analysis is thus obtained which is particularly reassuring in
view of the fact that no simple mathematical relation between (147) and (160), (161)
appears on the surface.
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To make the calculation feasible we must maintain the condition #+ 4o =" this is no
real restriction, for it simply means that height variations must apply to both the transmitter
and the receiver, which is in any case necessary in order to introduce the height-gain
function in a form explicitly related to the two media in question. Our object is most
conveniently achieved by taking X—  xXQy—

Let us first apply the idea to a homogeneous earth. As in the example of 8s -3, we consider
a pure dielectric earth with sinog —” and take d —600A. The inequalities (27) and (32)
indicate that both ray theory and the height-gain function should be applicable forh =2 A

30s-

height (wave-lengths) height (wave-lengths)

Figure 12. Field-strength (in decibels above Figure 13. Field-strength (in decibels above

an arbitrary level) against the common
height (in wave-lengths) of transmitter and
receiver situated 600 wave-lengths apart
over a homogeneous, pure dielectric earth

(sin aB=-|). Full-line curve deduced from

ray theory; crosses deduced from the height-
gain function, using the field-strength given

an arbitrary level) against the common
height (in wave-lengths) of transmitter and
receiver, situated respectively over a pure
dielectric earth (sin

conducting earth, each being 300 wave-
lengths from the boundary. Full-line curve
deduced from ray theory; crosses deduced

e—") and a perfectly

by ray theory at the height of 2 wave-
lengths as a starting point.

from the height-gain function, using the field-
strength given by ray theory at the height of
2 wave-lengths as a starting point.

The situation is depicted in figure 12, where the field-strength is plotted against the
full-line curve is that given by formula (26), and the crosses represent points deduced from
(34) starting from that on the full-line curve corresponding to 2A The field-strength at
h= 0 derived in this way is in agreement with that given by (25).

Similar results for the mixed-path problem are shown in figure 13. The height-gain
factor is now 1. | KhaB;
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the contribution from the perfect conductor being unity. The full-line curve is computed
from the ray-theory formula for the case 6-\-d0= w, which, from (161) and (162), may be

written A --1 + (i[l +/>@inf)]-™ [I —2sin - /2 (S-/£)}} (166)

The crosses represent points deduced from (164), starting from that on the full-line curve
corresponding to = 2A Good agreement is obtained over the expected range of heigl
and the field-strength at h= o derived in this way agrees with that obtained dir
(158) to within OT db.

10. A COMPARISON WITH MILLINGTON’S METHOD

In the example of 8s-5 it appeared that the ground-to-ground field-strength curve given
by millington’s method lay remarkably close to that obtained from the analysis of the
present paper. This is rather surprising in view of the fact that Millington’s procedure has
no ab initio theoretical justification in the case under consideration, and it is therefore of
interest to examine the reasons for its success in more detail. For the purpose of comparison,
it is convenient to express the idea behind the graphical manipulation of the attenuation
curves (Millington 1949 b)analytically in terms of the complete ground-to-groun
the formal extension is immediate, and, applied to two media (the transmitter and receiver
being on opposite sides of the boundary), gives the field

4 (166)
where Hlzand H2zefer to homogeneous earths of media 1 and 2 respective
medium 2 has infinite conductivity, (166) is equivalent to
T = M2Ti(rQ Ti(tif)/Ti(n)}, (167)

where A is the factor by which the free-space field must be multiplied to give the actual field,
Axreferring to a homogeneous earth of medium 1. We may remind ourselves that (o) —2.

To facilitate the comparison between (167) and (164), we suppose that |yo |*>1, as in
8s 2. Using (24) and (25), formula (167) then reads

We consider two limiting cases:
( a)rrepresents a small ‘numerical distance’ relative to medium 1,so that | | : and
J(r/ro) <™. A little reduction shows that (168) is now approximately

(169)
whereas the analogous expression from (158) is
i/ . el
(17°)
(b) rrepresents alargesnumerical distance' relative to medium 1. Then (168) simplifies to

20[~dK " } (17].>

and (155) to (172)
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It is clear from these formulae that the success of Millington’s method in the present
instance arises from the approximate numerical equality of certain functions which are
mathematically quite distinct. For (169) initiates a recovery of field-strength just beyond
the boundary only slightly less violent in degree than that determined by (170). Likewise,
the relations -

KAyu)=1-177764/0, for \yotl<I, (m )
~e~ii77Cs/210t) for |yjl>1, (174)
and *1—=e"“ "7 for IroiNI. (175)
-e-"Unyot)(176)
indicate that (171) and (172) are in close agreement for all values ofyGs in particular, (174)
and (176) differ only by a factor J (Jw),and consequently, in the example 0f§8-3, Millington’s

curve lies merely about 2 db above our own for all points beyond a certain distance from the
boundary, as figure 10 shows.

Since Millington’s method receives its severest test (for an earth of two media) when
applied to the model offigure s, we expect that it will prove even more efficacious in the case
of two finitely conducting media, a contention which is borne out in part Il of this paper;
and furthermore, our confidence is strengthened in the likelihood ofit producing satisfactory
results in more general problems, involving several different media and the curvature of the
earth’s surface, to which it is so readily adaptable.

PART Il. TWO ARBITRARY MEDIA

11, T he idealized problen approxinmate boundary conditions

In this second part of the paper we treat a generalization of the mixed-path problem
already considered, in that the assumption of perfect conductivity for one of the media is
waived. This extends the range of application ofthe theory, and enables a comparison to be
made with the one controlled experiment carried out at sufficiently short distances for the
earth to be considered fiat.

free-space n

x—
>

0

Figure 14. A possible model.

The idealized (two-dimensional) model that might be chosen is illustrated in figure 14.
With the co-ordinate system as before (figure 5), the earth occupies the region o, and
now consists of two homogeneous parts, medium 1 inX< o and medium 2 inx>o. However,
the introduction in this configuration, or any like it, ofa second surface ofdiscontinuity (that
between medium 1 and medium 2 ) appears to put the exact solution ofthe problem beyond
the reach of any mathematical technique as yet available; indeed, diffraction by a finitely
conducting wedge has not so far been treated rigorously. We therefore turn to a formulation
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in terms of an approximate boundary condition which is likely to be valid for media, the
modulus ofwhose (complex) dielectric constant is large, this criterion being adequately met
by most types ofground. The boundary condition has been extensively used in recent years;
for example, the work of Grunberg & Feinberg, previously mentioned, is based on its
adoption. For our present purpose it may be stated in the following form

Ex=
where aB the Brewster angle of the ground at the point in question, and |sin  |<1. For
‘glancing incidence' (177) isslightly more accurate than the standard form Ex= tan
We give an exact solution of the problem illustrated in figure 14 in conjunction with the
boundary condition (177). That is to say, at Y=o
Ex=
Ex = ZHM aB2H for (179)
where aBl@are the Brewster angles ofmedium 1and medium 2 respectively. The problem

becomes tractable in this form because only the field in > 0 is involved, and the interface
between the two earth media plays no part. The solution is effected by precisely the same
type of analysis as that used in part I.

An implication of (177) is that the field in Z< o in the vicinity ofthe point in question is
that of a plane wave travelling vertically downwards. The condition (177) may therefore
be expected to be accurate except in some region close to the line of discontinuity at 0. It
might be hoped that this in turn would imply the accuracy of the corresponding solution at
all points further than a fraction ofa wave-length from ; and since it is only at such points
that the solution can be reduced to a workable form, the limitation would be relatively
unimportant. On the other hand, the degree of inaccuracy involved cannot be assessed
quantitatively, and it is therefore reassuring to find that when sin = o (medium -
a perfect conductor) the results are essentially in agreement with those obtained by the
more rigorous treatment of part 1.

In concluding this introductory section it is worth noting the slight changes that are
introduced in the familiar parts of the succeeding analysis by virtue of adopting boundary
conditions of the type (177). These are made clear by seeing how the analysis for a homo-
geneous earth is affected. It is apparent that the alteration in the treatment of ss is the
replacement ofthe exact expression (s ) for the reflexion coefficient by the approximate form

sin @®&—sin

P(sin ) )
( sin @ sin *

( 180)
Thus, no branch-points appear in the integrand corresponding to (s), but this is not
significant since the resulting branch-cut integral was in any case neglected in arriving at
(12). The further approximations that are made between (12) and the final result (22) are
such that there is no essential distinction between the use of (180) rather than (s); indeed,
we remark that the precise condition (177) isimplicit in the second height-gain factor of (31).

The pattern now follows closely that of part I. In 812 an incident plane wave is con-
sidered, the formulation given in terms of dual integral equations, and the solution of these
obtained. The deduction of the solution for a line-source follows (813), and then the
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reduction of the double integrals to single integrals of the type (814). In 815 the
general expression for the ground-to-ground field is set out and its properties noted in some
special casesj a numerical example shows good agreement with an experimental result
demonstrating the recovery effect (816). Finally, the different approximate form of the
solution corresponding to ray theory, valid when the transmitter and receiver are sufficiently
elevated, is given in §17.

12 Thesulul\nnfuranincidenlplanewave

This section is devoted to the problem in which the plane wave (4) is incident on the
interface depicted in figure 14, using the boundary conditions (178), (179). As already
mentioned, only the region o is involved.

12T. Theformulation in terms of dual integral equations
The field of the incident plane wave is

1P = (0,0,1) eikrcosQ:(81)

j Ef= Z(sina, -cosa, 0) eiftrocos™“a). (182)

In order that the analysis may be paralleled with that of 851, the scattered field is taken as
that which, to give the complete field, has to be added to that appropriate to a homogeneous
earth of medium 1. If the earth were homogeneous of medium 1 there would be a reflected

wave (Hr = p”~sina) (0,0, 1) cikroes™ M\ (183)
| Er= Zpfsina) (—sina, —€0s a, o) elAus(619), (184)
where pgsin a) is the reflexion coefficient of medium 1. As indicated in §11, in order to keep

the approximations consistent the inexact form

) sina—sina
yo'sin o) — o

sina+ sin (185)

must be used; it will be seen shortly that this is necessary if the strictly reciprocal form ofthe
answer is to be preserved. The scattered field iswritten as an angular spectrum ofplane waves

Hg = T(cos/?) ] e-Hd)186)
C
. Ex = ¥n (187
I J c
Es =z i COS/?P(cos/?) e~iforoos(e~-Ad/?. (188)
The total field is given by Hz— H-\-H",-(189)
The boundary conditions to be satisfied at Z = o are (178) and (179). Expressed in terms
of the scattered field these are
M Es= z SinaiH=d y=o,*<o;
(m Ex Z{sin @B2E[z+ (sin aB—sin afzfj+ 2N}y at —o,x>0.

Vol. 246. A. 6
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Using (186) and (187), (1) and (11) lead respectively to the dual integral equations

"+ P(X) tA= o fora<o, (190)
0 N - AN

j’ il+ \;(1 % >W e-"cU 3 +smagl YerAo  for x>0, (191)

where A = cosa. Equations (190), (191) should be compared with (63), (64); when

sin  a®—0, the only difference is that the expressions 7(1 in the integrand of (63)

and 7(1 —XI/n2)/n on the right-hand side of (64) are replaced by sinaBL

12 2. The solution
Using the notation and technique of §5-3, equation (190) is satisfied if

and equation (191) if l‘Hr_WP\/V:(]/\’/ (192)
1 “ m’“W A |(AWN-F’R@S (193)

where the path of integration is assumed indented above the pole at ——A0. To obtain
P(X)explicitly from (192) and (193), clearly the major step is to express

7 (1 —A) + sin
7 (1 —A)+sinas: (194)

as the product ofa [/-function and an Z-function. We write

2sinqgl 7(1-A 2+sino;fl2 1
7(L-AQ7(1-A2+ 5, Z7(A)Z,(A)’ 1 A
the particular form being so chosen to reduce to (80) when sin ~ —0, provided that in (80)

7(1 —X2’n2)/n is replaced by sin ai ote, that ["(A) — Then
p n | ].—sm aBjsmam- 07@#\0\77(“*)

1;7 2770 +sinaM(I-A§)-»}{1+sinaJX |- A 2-*}£1(A) ~(A) (A+AD)’
the symmetry in Aand A0 ensuring that the reciprocity condition is satisfied.
The complete field is therefore given by
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e1 kos(0’a)+ pfsina)  asf+a>+ Hs, (197)
where
sin Ccos *a
Smam/JAj"\NOQi . ot (198)
£5)Jc(1+W JACHA (@HKTR)
12-3. Atransformation of the solution
To separate the expression (197) for Hmto the sum ofa g
a diffraction term, the path ofintegration @i (198) must be
descents, S(0).The pole at/? = tt— ocif captured in this process (in the positive sel

contribute the term

(199)
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The solution may therefore be written

3_ eiloroos(0-a)_|_/"2\ gikr os (6@
z W
/M _ f~(sina) for O<0<7r-a, ~201)
where .
Vv V?i(sina) for t'h 8> tt
and . . . .
sin OgA cos PBina f sin/?eos™e-i""(S-/b)
sin  dBJ L Xcos )39 d+sin aB
(202)
13 ThESUIuHon for a line-source
131. The generalform
We now consider a line-source situated at (ro, which would, in free-space, radiate the
cylindrical wave (3). Following the procedure of §6-1 it can be seen that the solution in this
case 1s Hz = Hi+ H*, (203)

{HM(KR) +//® (fc$)}+A XS, f)  for 078<-n-$Q
where (204)
/le-ti"{H$\kR) + Hf(kS)}+A,(S, f) for it>8>n-80

and
m 1_SMmas2
T (@24  sina )
cosM(a+ ?0) cos\f-\-6) sin (a+  sin (/?+#) e cosarrcost  goqn.
XJs(o)Js(o){Sin (a+ 80 + sindB] {sin (" +#) + sin cos (a+ B
XT"cos (#+/?)} {cos (a+#0) +cos (/7+#)}
(205)
in (204), AlGS ifyand A 2§if are terms corresponding to (12) for media 1 and 2 re
where the approximate form (180) of the Fresnel reflexion coefficients is used; that is
T ¥—=ikS cos @ 19 206
M S, f sinar s Sin (@ sma. da (r—1 2. (206)
13 2. Asimplification
As in 862, we can simplify (205) by putting — o in those factors of the integrand

which are ‘slowly varying' for small values of a and
To this end we note that (195) gives

1 =2sin  sina+ sin
Ufcos a) Licos na sin +
and by reasoning similar to that which leads from (101) to (103), (104), it is seen that
(207) implies 1.1 J(smaBl)sin®(a+ o)
Utcos a) (ZOE&(COS
1 1  ~/(sina™) cos™(a—aS2)
Lj(cosa) (cosa) cos”™q cos|(a—abl) (209)

62
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where Ffcosa)and Fz(cosa) have no singularities or zeros in the finite part of the complex

a-plane, and ~(cosa) Fz(cosa) = 1. (210)
Substituting for  cosa) from (209) into (205), it is legitimate to put a —/?—o in the

factor {F2[cos (a+ #0)] ~2[cos (/?+#)]}_1, and thus

AT smaM—sina®

Hi
it (2t) F2tos 6q) F2§os 6)
sin|-(a+ #0) sin §(/?+#) cos-|(a+ #o) cos™-("-b™) e-i/bfocosa+rcos™ dad/?
5(0) Js(0)sin i(a-f*0o"ha£2) s™ FOF Ub?oos|-(a-|-#0—"Li)' 'cos|r(/?+#—
X {cos (a+ #o) + cos (/?7+
(211)
By analogy with (107), (108) we write
liTT i i
sin aBl—sin aB®
m AT o LS AT S (212)
where
sinJ(a + 60) sin |(/?+0) e_i*roasa+ as$ dad/?
J5(0) J5(0)sin 2 (@+ ~o "haB)9n  + "+ &2ros A(a + #o—a%])’
X COS o i(oc-fi-\-d0—fl)
(213)
i _1 f _ sin|(a+ "0 sin I(A+") e_ildr°cosa+cosA
. . dad/?.
5<0)J5(0) sin” (a + ~04-a52) SiN + COS|r(a + #0—abl)
X QOS2 (~“F6  /Egi) COS™ (a--/2d~ d"6)
(214)

14. The reduction of the solution

In this section we show how the double integrals (213), (214) can be reduced to single

integrals of the type encountered in part I. Explicitly we discuss only for the case
6=o0, Q=.
We may write
1jd2 sin @)
* sin M#o+ %) cos i asi)
fof sin M (/?7+#) e_i™r°cosa+rcos/)

vs(o)Js(@)cos™(a+ #o aSl)sin™(/?+" + af2) cos-"(a+/?T Te)dad™>¥ (216)

Proceeding exactly as in 8§ T, (215) reduces to

Hb m 4sin”ocos”¥(ro//a)e-i*ai fe

sin|("o-a M)sini@o+ aB) cos|(o-a B cosico + aE2) sinf(o0t 0)Jo e 1 d?”
where 16>
i(,,) = P. {/9sin™+7(2r/AE,) e-*"tanP)d(i

Jo VcosM-V (2rQ« eI’ cot|((s0-a shH/ sin*+V (ar/rD erX’tanl™+ciM)}
X |[>[./\WAI) cosM+y (rQ&) sin® —e-N"~*photJ*o+tf)!
(217)
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Putting z = exp (i) in (217), we have

4 i 100z o

Hp y2J it (22 2azlp+ 1) (z2+ 2 1) (Tz2- 2

circle

where a= e_iir7 rd/?YcotJ(~o—aBl), A= V(r/A)—V(ro/A)>
s J(2r/RI) tan|(#+a£2), cotjo+00), (219)
S — e~iinRX) tan £o, C= +iV(ro/)-

The integral (218) can be evaluated by Cauchy’s residue theorem. Thus

i i J(p2-B 2=BJ(rdr)xbJ(RIIr)
0O = 2 r, \J(p2-B 2 U(P2~B 2 +BJ(rdr)+ iJ(R Jr)}
U((p2B£«VW /rQ)=F5V(r/rQ}
oy (M-« + "0 |
J{p2~a2 U(p2-a2+b}{JI{p2-a 2+)/r-BXRI,)}/
-2m b-b (220

At Vi22-")y (I»2-4 2)-<}y(iv2-*2) V W O -BJifiHr] Y
where the radicals are those branches with positive real parts, and the upper sign is for
B+ #o< 7t the lower sign for #+ #o> .

Substituting for J(/>) from (220) into (216) it is seen that

smsin \d@s\d e

m2 sin~ x0o—abl) sin |(“o+ aS) cos | (o —afil) cos|(# + af2) sin|(o -fo Q (/i+ 12+ 13, (221)
where /t —e *RE2 dA, (222)
with the upper sign for d+ #nd the lower sign for
*Ria2 {X+ Db
h Sia (A+ ) £+ V(10 ~BI(RIFQP™ (223)
KRiA2 _
{b-b9 7% (A-<) (A-SA(ro/r)-Fa(a/n)j iA (224;

If we put the integrands of (222), (223), (224) into partial fractions, and then treat the
resulting expression for / .4-/2-t</3 to the type of transformation which leads from (131) to
(133), we get

+|(W) -BJiRJIr|

YA I——

BA- [BV(ro/r) + bI(Rar)T2
Jid - [0VIro/ri + B .JiRJr)]1

+ Jit A2 +*e  Jio A-iz2 )’ (229)

+ 0O
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where the upper sign is for 6+ 60<7r, the lower sign for d 60>, and

T

Note that when sin R  —o N =1and (225) reduces to (
The discontinuity in Hdacross 6+ 60 = 1, calculated from (225), does not exac

that of the geometrical optics term (204). The reason for this slight discrepancy is not clear,

but it can be removed by using a value of Nwich is different

mately equal to it when | amand | Bl

proceed straight to the case = o, 60=

15, Toransmitter and receiver on the earth's surface
151. The generalformula
Putting d= o, 0Q=1, (219) gives
aJ{Rilrg= M. e-ii7rtan
by {Rif) = J2 tan JaB, (227)
b, = 0.

To meet the above-mentioned difficulty concerning continuity across #+ 0 = we take
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v >HE > bJiRJIr)-"e ii7rd4 (228)
2
with the result, from (226), that N (229)
Then (221) gives effectively
Hf = 87l t~ikd{Ix+ s 2+ /3 (230)
where, from (225),
p—Mi R [» Fo o nia
[1+/24"]3 ‘Pg , dA+ « - g-Aidia2
roJo I2-afR|/r@aA+V roe Jra”~rir™ )
Wi AL ! Ni Al
M Jo A~ (i1 ’ |*A 2-b 2{ror
00 AL AooleA
S ApdA), (231)
o
1@upper sign for 6-\-60< w«and the lower sign for

Next, we consider H8 There is no longer any simple relation like (135), and the foregoing
analysis must be repeated. We confine ourselves to stating the result. Corresponding to (230)

Hf = sme~ikdl§232)

where /0 is very similar to (231), the parts within the curly brackets remaining unaltered,
provided the upper sign is used, and the external factors I/(aM—  being replaced by

f/(aB ~haS2)-
Noting that (212) gives

piTT

m="-7) +yf)> (233)
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we are now in a position to write down the expression for the complete ground-to-ground
field. In order to cast the solution into its most compact form we introduce the appropriate
‘numerical distances ’ via the quantities

Zoi = > 7?2 =W aB>
= lkra®= ikdaBi
and also make use of the relations
6 (0,7,) 1 >e»*JF(y,) 11 1,2) (235)
6 (7 0i, Z02) + 7 (70570i) = 2-N70i) M(No2), (236)

the first ofwhich has already been mentioned in going from (138) to (139), the second being
proved elsewhere (Clemmow & Senior 1953).

Thus, when the transmitter and receiver are on opposite sides of the boundary, the factor
A by which the free-space field must be multiplied to give the actual ground-to-ground
field is

A afl A-(Z1) + af2-M-(y2)

IBIT at2 Vv
2eii )
Ju Zi™on y.Jr) N By2G(y®s) 21 I aR7i72MN7o)N(7D)

(237)

When the receiver is on the same side ofthe boundary as the transmitter we may use in (213)
and (214) approximations analogous to those adopted in §7-3; these give + —o0,
whence the diffraction field is negligible and the total field is effectively that pertaining to
a homogeneous earth. Both this result and (237) cannot be assumed to hold within half
a wave-length, say, of the boundary.

15 2. Limiting cases: the geometric meanformula

The formula (237) is clearly reciprocal, being unaltered by the transformation <>rQ,
aB:*>  aRlt is somewhat complicated, but may be seen to have the expected behaviour in
a number of limiting cases.

(1) asi = af2-Then Y¥—Yy2 yo Jr=
the formula A= 2K(yljor a homogeneous earth is recovered.

(2) r—o. Then y@—o, Yo — yX 702\V{rolr)= >
reduces to A =A(yQD), which gives the field at distance from atransmitter in the presence
of a homogeneous earth of medium 1.

3 &= 0. Then yo2 = 72 —o and (237) becomes

A=2L(yD+-j"r ylGyaLyQl ~ 238)

hence (154) is recovered, with modifications arising only from the slightly different defini-
tions of the ‘numerical distances’. This result indicates the extent to which the use of
approximate boundary conditions isjustified.
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4 |yo1d Iz I™ 1- The asymptotic approximations

FM~Wa’ (239)
G(a’s)~zia(az+P) ’ (240)
(241)

for large | a| show that in this case the expression in square brackets in (237) vanishes to our
order of approximation, and hence

ABI+NS2\71 72/
=-a4 e(«L+a) from(234)-
This may be written A~ A (242)

which is evidently the geometric-mean formula discussed in 84. The present derivation
shows that it is applicable when the distances of the transmitter and receiver from the
boundary represent large ‘numerical distances’ relative to the respective media on which
they are situated. On this count Millington’s method for the mixed-path problem is in
error; for his procedure the corresponding condition is the stricter one that the distances of
the transmitter and receiver from the boundary represent large ‘numerical distances’
relative to both media.

®) r = r0. This case is mentioned here because when it holds formula (237) is expressible
in terms of the Fresnel integral.

For from (236) we have

W= iM(f (= 1,2), (243)

giving A =a" +al dBIK(7l) +aBlK{y2) -----fei*froi) —as2"(ro2)P) ¢ (244)

It may be mentioned that Millington’s method always leads to the geometric-mean formula
when r —rQ, as is clear from (166).

16. A NUMERICAL EXAMPLE: COMPARISON WITH EXPERIMENT

A ground-to-ground experiment has been conducted by Millington (1949 a@; see also
Millington & Isted 1950) which is ideal for comparison with the flat-earth theory given in
the present paper. It was on a frequency of 77-5 mc/s (a wave-length ofapproximately «+ m),
with a transmission path partly over land (medium 1) and partly over sea water (medium 2)
having a total length ofabout 4 km (the further section over land again being ofno concern
here). The conditions are closely represented by

aB = &=~ eiiw, r0= 350/, 5501 (245)

From (245), yo1 and yxare real and much greater than 1, but |y2| is of
unity; in particular, y\Qqro/r) =1-22171. The asymptotic expansions (239), (2
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were therefore used to some extent in (237), but could not be applied to F(y®), and
G(y® 7a@J{rdr)). Since argy. = arg yo2 = J?r, it was possible to evaluate the first two of these

with the help of the tables of .
fj§ eaoa (246)
0

given by Miller & Gordon (1931) for real values ofx. The last was handled by a numerical
evaluation of X “a

" jor 19017 d4 (247)

for real values of %between 0 and T5.

The results of the complete computation are illustrated in figures 15 and 16.

Figure 15 shows the attenuation curve, appropriate to a point-source, for the composite
path, those for the respective homogeneous earths also being included for comparison
purposes. The mixed-path curve contains a region of marked recovery, the field-strength
rising very steeplyjust beyond the boundary to a local maximum some 10 db above its value

distance (wave-lengths)

Figure 15. Field-strength (in decibels above an arbitrary level) against distance (in wave-lengths)

from the transmitter Pbr a homogeneous medium, sea water with sin
(b) for a homogeneous medium, land with sin - + for the mixed-path, by the present
method, fbr the mixed-path, by Millington’s method.

there, at a distance from it of about 100 wave-lengths; and isjust beginning to run parallel
to the *all-sea’curve at the limit ofthe graph. The curve derived from Millington’sprocedure
is shown dashed, and away from the boundary lies only about 1 db above that calculated
from (237). The individual crosses are experimental points; they have been plotted relative
to the dashed curve in order to allow for a slight discrepancy between the present graphs and
those given by Millington, due possibly to small differences in the choice of values for
and aBR

Vol. 246. A. 7

exp (Jbr),



Downloaded from https://royal societypublishing.org/ on 03 July 2023

50 p. C. CLEMMOW ON

The corresponding phase curves are shown in figure 16. Although the phase for the ‘all-
sea’ path is already below that for the “all-land ’ path at 350 wave-lengths from the trans-
mitter, there is nevertheless, for the composite path, a very rapid phase recoveryjust beyond
the boundary: the curve rises steeply to a local maximum at about 20 wave-lengths from
the boundary, and then settles down quickly to run parallel to the “all-sea’curve, its ultimate
asymptotic value being —135°.

distance (wave-lengths)

Figure 16. Phase (in degrees relative to that of the free-space field) against distance (in wave-

lengths) from the transmitter (a)fora homogeneous medium, seawater with ¢

(b) for a homogeneous medium, land with sin  —J, (c) for the mixed-path.

17. Elevated transmitter and receiver . ray theory

To complete the analysis we set out briefly in this section the results of a ‘ray theory’
corresponding to that given in 89 -1.

The appropriate steepest descents approximation to (205) for sufficiently elevated trans-
mitter and/or receiver is (cf. (159), (160))

i (sin sin @) sins"sin s
nJ (271) sin as1 (sin R+ sinaz2) (sin d+ sin aB®) L ¢cos 0Q L Cos 6)
Xf f — ty @ | s(o)Jsg-)IygsogaQ %gx-;-OCOSA(??+#)
. F—°eii 1 (sin aBl —sin «AB) sin  sin 6

sin @BI(_sin + sinafi2) (sins + sinafi2) Lx(cos o Q L x(coss )

Fwm-sm .
ikRi
I M7 ~ - 4 (248)
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with the upper sign for d+ Ooend the lower sign for The corresponding
geometrical optics term is

e-i -iks
AKR)+pAr mf) 7TW) £249
J(kR)+P2(sin™® JW)
It is easily seen that the combination of (248) and (249) is continuous across
For on this line d= f .and from (207)
siniy (250)
sin dein iJr+ sinaS?)  (cos L x(cos sinf +'sina5l'
so that (248) becomes
Hd = {pAsinf)-pl{sm HK(S+R)) s (251)
the discontinuity in which just balances that in (249). The complete field
in fact
PrikR : . o kv JVh eHiS
H. “KR) [|[/?i(smT) +/)2(sinft)] + [/>i(sinf) —pZsinijr)]j-eiin ) J{kS)
(252)
The formula (252) is a generalization of (165), the two being obviously equivalent when
a2(sinf) = 1

18, Concluding remarks

The main object of this paper is to give an analytical treatment of a suitably simplified
problem which is fundamental in the theory of radio propagation over an inhomogeneous
earth. This purpose is achieved by establishing, with adequate rigour, formulae from which
any example could be largely worked out; furthermore, these formulae are simple enough,
at least in special cases, to demonstrate the general nature of the effects involved, and they
provide, in particular, a theoretical confirmation of the sufficiency of Millington’s method
in practical application. Many other aspects, however, remain to be considered; for
example, as noted in the introduction, problems of great interest arise which are allied to
but somewhat different from that treated here, in addition to those involving the obvious
generalizations of increasing the number of media and allowing for the curvature of the
earth’ssurface. There are several ramifications of the present analysis which may lead to an
understanding of a wider range of phenomena; it is hoped that these will be pursued in
detail elsewhere, but we conclude by indicating something of their scope in a briefcritique of
the mathematical method.

Let us begin by considering the limitations of our method. In the first place, it applies
only to a single boundary; integral equations could be set up in more general cases, but no
rigorous solution then appears possible; indeed, it would seem that the separation of the
ntinuity, y =y, into two homogeneous sections extending from x = —co to
Xx= o and from x = o to X = +00, is a vital condition for the success of the exact analysis;
for example, even the problem of a plane wave incident in free-space on an infinitely thin,

7-2
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perfectly conducting strip of finite width has not yet proved tractable to the present
technique. Again, the assumption that the earth’s surface is flat cannot be waived.

Turning from the question as to when a formal solution is possible, we now consider
the method used for its reduction to an expression capable of yielding numerical results.
Basically, the procedure is to remove certain factors from the integrand ofa double integral
at the ‘predominant’ values of the two variables of integration; exactly which factors are
involved depends on the particular 6 and 60, but part of the integrand has always to be
treated in this way before any progress can be made. The extent ofthe error thus introduced
cannot be stated with precision, but it seems that the validity of the method depends on kr
and krObeing ‘large " in the sort of way that is common in the calculation ofradiation fields;
this despite the fact that the resulting approximation to the solution is finite and continuous
at r= o and ro=o (/20 ), not having the infinity which usually indicates the failure of a
asymptotic expression.* It may be remarked that the restriction is likely to be most stringent
with regard to the phase, and this is especially unfortunate ifit is true that coastal refraction
phenomena are largely determined within a wave-length of the coastline.

The direct scope of the solution is limited by the difficulties of computation. It would, of
course, be out ofthe question to tabulate G(a, b) over the required complex range ofaand b.
There are, however, a number of results connecting G(a, b) with the Fresnel integral
(Clemmow & Senior 1953), and the prime need for facilitating the calculations is really
a tabulation of this latter function, which would in any case be valuable in other problems.
As a contribution to this end Clemmow & Munford (1952) have computed a four-figure
table of F[V(i7r) «, 0< | al<0-8, o <arg<:< 45 °, at intervals suitable for linear interpol:
each way; but much remains to be done to close the gap between these values of | j and
those for which the asymptotic expansion is adequate.

We now discuss several means by which further results might be obtained. Perhaps the
most pertinent question to ask is whether the method can be directly adapted to treat the
case of a point-source. The answer is probably yes, the fundamental consideration being
a suitably polarized plane wave incident at an arbitrary angle, the plane ofincidence being
no longer constrained to lie normal to the boundary line. At first sight it seems likely that
the technique given elsewhere (Clemmow 1951, Miles 1952) for solving quasi three-dimen-
sional diffraction problems would be applicable in this case, but a closer inspection indicates
that a derivation ofthe complete solution meets with the following difficulty: in the problem
of reflexion at the interface of two media the basic polarizations are, in the present notation,

those for which Ey= o or Hy= orespectively; whereas, in diffrac
two-dimensional conductors in free-space, whose generators are parallel to the z-axis, the
basic polarizations are those for which Ez—o or

how these different aspects can be combined. On the other hand, whether or not this
difficulty can be resolved, the use of approximate boundary conditions reduces the problem
to a scalar one which is certainly tractable, as the work of Griinberg and Feinberg shows.

Even ifthe solution for a point-source were obtained it would be complicated and subject
to the limitations described above, so that simpler approximate methods should certainly
be considered. One approach is to apply the formulae for normal incidence to each radial

* This point might repay closer examination. For instance, the behaviour of the expression (154) at
r= 0 is that which would be expected, from general diffraction theory, in the exact solution.
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independently, as has been suggested by Millington with reference to his own work, Fein-
berg’s analysis lends support to this idea. Again, as regards coastal refraction, the arguments
of Eckersley and Ratcliffe can be more forcibly applied to phase curves such as that shown
in figure 11: in physical terms, the phase velocity over land just before the boundary is
negligibly less than that of free-space propagation, whereas over sea just beyond the
boundary it is very much greater; Struszynski (in the Discussion following the paper by
Millington & Isted (1950)) has suggested qualitatively that this will be the case by a simple
argument based on the tilt of the wave-front near the earth s surface, although in the
author’s opinion his reasoning is not entirely unambiguous. This effect certainly implies
a ‘refraction’ in the right direction, but the magnitude would appear to be so sensitive to
the conditions of the experiment, in particular to the positions of the transmitter and
receiver, that nothing further can usefully be said at this stage. Incidentally, Millington s
speculation that his technique might also be applicable to phase is to some extent borne out
by the analysis ofthis paper, though it would be liable to give errors in certain circumstances.

With reference to the ‘image’ method mentioned at the end of §9T, it might be extended
by using the exact image (o) of a line-source in a homogeneous, flat earth in place of the
special image (163). This procedure would avoid the introduction of the function , it also
offers the possibility of an approximate examination of the field in the immediate vicinity
of the boundary, and is equally applicable to the case of a primary point-source without
restriction on the direction of propagation. On the other hand, it is limited by the require-
ment that one of the media be a perfect conductor.

Finally, a word should be said about the case of horizontal polarization. The formal
solution could be obtained by an analysis similar to that for vertical polarization, though
its reduction to a workable form would proceed on somewhat different lines because the
steepest descents technique would no longer be characterized by the existence ofa pole close to
the saddle-point. Alternatively, because of the invariance of Maxwell’s equations under the
transformation E->H, H * —E,
horizontal polarization (in terms of Erather than Hz) on writing

dB For the ground-to-ground field the geometric-mean formula would be valid for all
positions of the receiver on the opposite side of the boundary to the transmitter except those
very close to it. On the other hand, the height-gain is so great near the earth’s surface that
this case is not of much practical consequence, and indeed the effect of inhomogeneities in
the ground is generally likely to be much less marked than for vertical polarization.

This work was carried out partly at the Cavendish Laboratory, Cambridge, and partly
at the Department of Electrical Engineering, Imperial College of Science and Technology;
acknowledgement is made ofthe receipt ofgrants from the Further Education and Training
Scheme and the Department of Scientific and Industrial Research covering the periods
concerned. The author would like to express his thanks in particular to Professor H. G.
Booker for initiating the research and inculcating many useful ideas, and also to MrJ. A.
Ratcliffe, F.R.S., Mr G. Millington and Mr N. Elson for a number of helpful discussions.
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