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Summary. Tsunami generation by earthquakes in a flat, isotropic, elastic, 
vertically stratified earth underlying a uniform-depth, incompressible ocean 
can be studied in terms of the tsunami normal mode of the combined ocean- 
solid earth system. We derive, in a way that demonstrates their natural 
extension from traditional approaches to tsunami theory, the equations and 
boundary conditions governing the tsunami mode displacement and stress 
eigenfunctions, then solve the excitation problem by a variational method. 
This leads to a straightforward expression for the far-field tsunami displace- 
ments due to a point moment tensor source in the solid earth. Numerically 
computed spectra and waveforms reveal clearly the dependence of the far- 
field tsunami on the source depth, duration, moment and mechanism. 

Introduction 

A central problem in tsunami generation is to determine the waves excited by a realistic 
earthquake source buried in the solid earth underneath the ocean. Early work on tsunami 
generation frequently involved some time-dependent deformation, circular, elliptical or 
rectangular in shape, driving an ocean which overlay an otherwise rigid bottom (e.g. 
Takahashi 1942; Momoi 1962; Kajiura 1963). A few authors have extended this approach to 
use more realistic, static vertical deformation patterns due to earthquake fault models and 
observations, rather than simple but arbitrary shapes and patterns; Ando (1982) provides a 
good review. The correctness of even the latter models is not readily apparent, however, 
since the time-dependence of the deformation is somewhat arbitrary and the full interaction 
of the ocean and solid earth is approximated by a partial decoupling in which the solid earth 
can drive the ocean but no reciprocal action is permitted. 

One way to incorporate the full ocean-earth interaction into a model of tsunami 
generation by a realistic earthquake source is to use normal mode theory similar to that 
applied to seismic surface waves. Tsunamis are indeed guided surface waves, closely akin to 
Rayleigh waves. They differ most significantly in that the restoring force is gravitational in 
one case and elastic in the other, and that tsunamis consist of only one mode, corresponding 
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2 R. P. Comer 
to gravity waves on the ocean surface. Therefore, in this paper we derive the equations and 
boundary conditions governing the tsunami mode of a flat, uniform-depth ocean overlying 
an elastic isotropic solid earth with elastic parameters and density varying only with depth. 
The far-field tsunami excited by a point moment tensor source is then obtained in terms of 
the normal mode eigenfunctions by a variational technique extended from the one 
developed by Saito (1967) for seismic surface wave excitation. 

Several other investigators have attacked the problem of tsunami generation with the 
ocean and solid earth fully coupled. Podyapolsky (1970) and Alexeev & Gusiakov (1976) 
considered a point earthquake source in the solid earth, which was represented by an elastic 
half-space; however, the accounts of their methods are rather incomplete and only a few 
results are illustrated. Yamashita & Sato (1974) extended a similar model to a finite, moving 
source, but the explanation of how they perform the key step of evaluating the residue at 
the ‘tsunami pole’ is omitted. And although the works just cited are all based on flat earth 
models, none make reference to the tsunami normal mode of a flat ocean-earth system. 
Ward (1980, 1981, 1982a, b) has introduced normal modes in the tsunami generation 
problem, but in the context of a spherically symmetric ocean-earth model. He formulated 
the equations of motion in a manner originally applied to the Earth’s free oscillations and 
made use of a very general result to obtain the tsunami mode excitation. 

Ward’s results are useful and important, yet it is nonetheless also rewarding to explore 
tsunami normal mode excitation using a flat earth model. At the very least, two independent 
solutions of very similar problems can be used to check one another. Also, no significant 
increase in accuracy can be obtained simply by going from a flat earth model to a spherical 
one, since the tsunami mode eigenfunctions (unlike those of long-period seismic surface 
waves) do  not penetrate the solid earth very deeply, and a correction for geometric spread- 
ing on a spherical, rather than flat, surface is easily applied. Of course, the geometric 
spreading of real tsunamis is different from either idealized case, due to the bathymetric 
variations (resulting in variations in wave speed) in the real oceans. 

A more substantial difference between the present work and Ward’s (1980) is that we 
consider only the most important forces. Elastic, gravitational and inertial terms, and the 
effects of self-gravitation, are all included by Ward in both the solid earth and ocean layer. 
However, tsunamis are basically ocean surface gravity waves and elastic terms in the ocean 
are of very secondary importance. Lighthill (1978), for example, notes that acoustic and 
gravity waves are fully decoupled in the oceans and Stoneley (1963) demonstrated that 
modelling the ocean as an incompressible fluid is a very good approximation with respect to 
tsunami propagation. Ward’s exploration of the energy partitioning in tsunami modes 
confirms this: the gravitational and inertial forces are of large and roughly equal significance 
in the ocean, and also, in the solid earth elastic forces are much more important than inertia 
or gravity. Actually, in terms of tsunami propagation, displacements of the solid earth can be 
neglected altogether, which has been the traditional approach in tsunami studies, yet they 
are crucial in terms of tsunami mode excitation by sources within the solid earth. 

Hence we now consider surface gravity waves on an incompressible fluid in a uniform 
gravitational field overlying an elastic earth in which gravitational forces are ignored and for 
which it will be shown that elastic forces are far more important than inertia. A side benefit 
is that we are able to build a conceptual bridge between the traditional approach to tsunami 
modelling based on the hydrodynamics of an incompressible, flat ocean (e.g. Kajiura 1963) 
and the normal mode methods. We first develop the equations governing the tsunami mode, 
then study its excitation. We note here that the flat earth excitation problem differs 
substantially from the corresponding spherical earth problem. There is a continuum of 
frequencies and wavenumbers for a flat earth but frequencies and angular orders are discrete 
on a spherical earth. Also, the normal modes of a finite body form a complete basis for the 
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The tsunami mode and its excitation 3 
small amplitude oscillations of the body but those of an infinite body, like the flat earth, do 
not. Consequently the theoretical development of the solution to the excitation problem 
given here is totally distinct from Ward's (1980). Finally, we remark that, in common with 
Ward, we assume the ocean to be inviscid and deal only with linearized equations of motion 
and boundary conditions. The former assumption was justified by Stoneley (1963) and 
linearity, which is usually assumed in seismology but often not in hydrodynamics, is 
considered in the following, brief section. 

Linearity 

Exact hydrodynamic equations are non-linear, due to both convective inertia terms and 
boundary conditions. However, it is widely agreed that non-linear effects are unimportant 
in the generation and deep ocean propagation stages of a tsunami and can become important 
only in its coastal interactions (Carrier 1971; Le Mehaute 1976; Wu 1979). Hammack (1973) 
and Hammack & Segur (1978) found that for one-dimensional propagation non-linear terms 
become important after a certain time, which they established clearly, but, as Wu (1979) 
pointed out, in two-dimensional propagation the decrease in amplitude due to geometric 
spreading eliminates this effect. 

One clear condition for the linearity of waves of long wavelength h is that the amplitude 
qo be small compared to the water depth h. That is, 

q01h * 1 
(In fact it follows from the results of the next section that for small h/h  the non-linear term 
' /zu2 in the Bernoulli equation (8) is much smaller than the term &$/at if this condition is 
satisfied.) Another widely posed criterion for the linearity of long waves is whether the 
Ursell parameter q0h2/h3 is small with respect to 1 (Ursell 1953; Le Mehaute 1976). 
Generally the Ursell parameter is not too large but can be of order 1 near the origin of a 
tsunami (Hammack & Segur 1978; Wu 1979). However, the Ursell parameter is essentially 
a ratio of the relative importance of non-linear effects to linear dispersive effects for long 
waves and if both effects are small that ratio may not be significant. For example, the use of 
linear dispersive theory should be correct as long as non-linear effects are small, even if 
dispersion is negligible. 

Indeed, linear non-dispersive theory, based on the small amplitude condition and the 
condition 
hlh < 0.05 

is often applied to tsunamis (e.g. Ando 1982) and is valid for large wavelength sources and 
short propagation paths. In this case all waves travel with the speed a, where g is the 
acceleration of gravity. An improvement on this is the linear Boussinesq theory in which a 
small correction, good at long and moderate wavelengths, is applied to account for 
dispersion (e.g. Carrier 197 1). 

Throughout this paper the long-wavelength assumption is avoided, however, and we use 
linear dispersive hydrodynamic theory valid for all wavelengths. This is advantageous in 
treating point sources which have more short-wavelength radiation than real tsunamis and, 
of course, the validity of linear superposition makes powerful and straightforward methods 
readily applicable. 

The tsunami mode 

We consider plane water waves propagating across a flat, ideal, incompressible ocean of 
uniform depth h overlying a solid isotropic earth whose elastic parameters and density vary 
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4 R. P. Comer 
only with depth. Fig. 1 illustrates the geometry and coordinate system chosen for this 
problem. A constant gravitational field with acceleration g acts in the downward (positive z )  
direction in the fluid, and is ignored in the solid. The x- and z-components of the Lagrangian 
displacement field may be assumed to have the form 

u = r l ( z )  cos(kx -at) 

w = -r2(z) sin(kx-at), 

where t denotes time, k the wavenumber, and -o the angular frequency, corresponding to 
propagation in the positive x-direction. r1 and r2 ,  functions only o f z ,  are the displacement 
eigenfunctions of the tsunami mode. The vertical stress components due to the wave can 
similarly be expressed as 

uzu = r3(z) cos(kx-at)  

uzz = -r4(2) sin(kx-or). 

We next determine the systems of equations, in both solid and fluid, and the boundary 
conditions to be satisfied by the displacement-stress vector r = (rl , r 2 ,  r 3 ,  r4).  

Our approach so far is identical to the displacement-stress vector formulation for the 
Rayleigh wave modes of a flat, vertically stratified earth. This is not surprising, since both 
wave types involve particle motion in a vertical plane parallel to the propagation direction. 
Therefore, for convenience, we adopt the notation which Aki & Richards (1980) apply to 
Rayleigh waves and, whenever it is helpful, we refer directly to their equation numbers, 
prefacing each with ‘AR. 

In the solid earth, just as in the Rayleigh-wave case, the tsunami displacement-stress 
vector satisfies (AR7.28), or 

k p-1 0 

d -kX[h + 2 ~ 1 - l  0 

k2{ - w2ps 0 

--o 2 P s  -k 0 

where { = 4p( h + p)/( h + 2p) and the Lam6 parameters h and p and density, ps are functions 
of z .  Because gravity is neglected in (3), it is not possible to obtain the corresponding system 
of equations for the incompressible ocean layer simply by taking the limits c(-+O, A+-. 

OCEAN 

z =-h  

I SOLID EARTH 

L 

Figure 1. Geometry and coordinate system for tsunami calculations. 
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me tsunami mode and  its excitation 5 
Instead, we derived the equations governing r in the fluid through a very classical 
formulation (e .g. Officer 1974) beginning with a scalar velocity potential. 

Assuming irrotational motion, we introduce a scalar velocity potential 4 such that the 
velocity field of the fluid is given by 

v =  -V@, (4) 

V24 = 0. (5) 

Sifice the fluid is incompressible, the equation of continuity is simply 

We also introduce the vertical displacement of the free surface which we denote by 7,where 
77 is positive for upward displacement (in the negative z-direction). Naturally, 

?(X, Y ,  t) = -w(x ,  Y ,  -h, 9. ( 6 )  
Actually (6) is approximate in two ways: (1) it is linearized in 17 with the right-hand side 
evaluated at z = -k rather than, z = -h-17 and (2) 17 is an Eulerian displacement, but since 
the wave amplitudes are small and the waves taken to be periodic, the displacements are 
small and the distinction between the Lagrangian and Eulerian approaches can be neglected. 

Another important quantity is the pressure p in the fluid. At the free surface it must 
equal atmospheric pressure p o ,  or 

P ( X , Y ,  -h -V,t)=Po. (7) 

The Bernoulli equation for an incompressible fluid gives a general expression for the pressure 
in the fluid: 

where p is the fluid density, 52 the gravitational potential, and C(t) is a constant of 
integration with respect to spatial coordinates. R satisfies g = -%! where g is the 
gravitational field. We can set R = -g(z + h) ,  fixing an arbitrary constant of integration. In 
order to satisfy (7) and (8) in the case of static equilibrium @@/at = 0, u = 0,  Q = 0) we need 
C(t) = po/p .  Then, neglecting the non-linear term '/z u Z ,  (8) becomes 

- P = ? ? + g ( z + h ) + -  Po . 
P at P 

At this point we also note that from (7) and (9) 

(9) 

which has been linearized in q by taking z = -k rather than z = -h-77 on the right-hand 
side. A second relation between 17 and 4 is obtained from (6) and (4), aV/a t  = a@/az at 
z = -h .  Combined, these give the free surface boundary condition on the velocity potential. 

We now relate the classical quantities 4 andp  to the displacement-stress vector, and derive 
the equations governing r in the fluid. From (4), &/at = -a@/ax, which together with (1) 
yields 

4 = cr1(z) cos(kx-at), (12) 
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6 R. P. Comer 
where c = w/k is the tsunami phase velocity. Then, from (9) and ( I  2 )  

wz 
p = p o + p g ( z + h ) + p  ~- r,(z)sin(kx-at). (13) 

k 

In the fluid the shear stress u,, must vanish and the normal stress uzz is simply equal to 
minus the non-static component o f p ,  so that 

r3 = 0 

r 4 = p  - r l .  
w2 

k 

Thus r3 and r4 are redundant in the fluid, and the analogue to  (3) is a system of two first- 
order equations involving only r1  and Y , .  It is readily obtained. From (4), aw/ar = -aG/az, 
which leads to drl/dz + kr, = 0 when combined with (1) and (12). Rewriting the continuity 
equation (5) as au/ax + aw/az = 0 ,  we find from (1) that dr2/dz + krl = 0. Hence 

It is straightforward to formulate the (linearized) boundary conditions on r. At the 
interface z = 0 the vertical component of displacement w must be continuous, the shear 
stress uzr must vanish, and the vertical normal stress a,, must be continuous. Thus 

,.?lid(o) = rpd (0)  (164 

Superscripts ‘solid’ and ‘fluid’ are added here and wherever they are needed for clarity. The 
free surface boundary condition (1 1) can also be expressed in terms of the displacement- 
stress vector. With the use of (4), (1) and (12) it becomes 

w2rl(-h) = gkr2(-h). (17) 

r l , r 2 - + 0  as z 3 m ,  (18) 

’ 
Two more boundary conditions are required in general, 

that is, displacements must vanish at infinite depth in the solid earth. 
Equation (I  5) may be solved analytically; for z < 0 

r l ( z )  = A  cosh kz + B sinh kz 

r2(z) = -B cosh kz - A  sinh kz .  

The constants A and B and the displacement eigenfunctions r l ( z )  and r z ( z )  in the solid earth 
(for z > 0) must be obtained numerically from (3) and the boundary conditions (16), (17) 
and (18). Such a solution will also yield the dispersion relation for the tsunami mode, which 
follows from the requirement that the equations (15) and (3) and the boundary conditions, 
which are all homogeneous, be mutually consistent. 

In the special case where the solid earth is an elastic half-space in which X = p = constant, 
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7ke tsunami mode and its excitation 7 
the eigenfunctions may be approximated by the following analytic expressions: for z < 0 
(ocean) 

rl(z) = cosh kz t (3pc2/4p)  sinh kz 

r2(z) = - sinh kz - (3  pc2/4p) cosh kz 

and for z > 0 (solid earth) 

r l ( z ) =  - (pc2/2p)(kz-1/2) exp(-kz) 

r2(z) = - (pc2/2p)  (kz + 3/2)  exp(-kz) 

r3(z) = pc2k(kz) exp(-kz) 

r4(z) = pc2k(kz + 1) exp(-kz). 

(Note that in these expressions r1 and r2 are dimensionless, while r3 and r4 have dimensions 
of stress divided by length, so that to be strictly consistent with (1) and (2) r must be multi- 
plied by a constant length scale.) It is obvious that (20) satisfies (15) exactly, and that (16) 
and (1 8) are satisfied exactly by (20) and (2 1). The only approximation involved is that (21) 
satisfies (3) only if the term wzps is replaced by zero. At the lower frequencies important 
for tsunamis this is reasonable, and corresponds physically to neglecting inertial forces with 
respect to elastic forces in the solid earth. The phase velocity c must of course be calculated 
before (20) and (21) can be evaluated. It can be obtained by numerically solving the disper- 
sion relation that results from substituting (20) into the free surface condition (17). A phase 
velocity curve computed in this way, for a typical set of model parameters, is illustrated in 
Fig. 2. 

Fig. 2 also shows that, except at very low frequencies, the phase velocity is well approxi- 
mated by the well-known rigid bottom result, 

c = [ (g / k )  tanh kh] 1’2 ( 2 2 )  

which follows from requiring that (19) satisfy (17) and the condition u2(0) = 0. Under this 
condition B/A = 0 in (19) and r = 0 in the solid earth, which also follows from (20) and ( 2  1) 

WAVELENGTH, krn 
10‘ 10’ lo2 10 I 

I I I I I 

,rigid ocean floor 
0.2 ---- 2 ----- 

< 
r elastic halfspace underlying ocean 
>- 
t 
0 
5: 
2” 0.1 ’ 

I 
w v) 

a .  

O l  I I I 

los 10‘ lo3 loz 10 
PERIOD, I 

Figure 2. Tsunami phase velocities for a 4 km deep ocean. The parameters chosen for the half-space are 
ps = 3.1 gem-’ and h = f i  = 5.2 X loL1 dyn cmC2 (corresponding to P and S velocities of 7.15 and 
4.1 km s-’, respectively). The period scale is valid for both curves but the wavelength scale was determined 
for the rigid bottom case. 
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8 R. P. Comer 
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Figure 3. Tsunami displacement eigenfunctions in the ocean, normalized so that r 2  = 1 at  the ocean 
surface. The model parameters are as in Fig. 2. 

in the limit p+m.  Since pc2/p Q 1 ,  the rigid bottom condition leads to  a good approximation 
of the tsunami mode eigenfunctions, which is fine for representing tsunami propagation. 
However, although the quantities in (21) are very small with respect to the larger terms in 
(20), they cannot be neglected in modelling the excitation of the tsunami mode by sources 
within the solid earth; otherwise the excited waves would have zero amplitude! 

Figs 3 and 4 illustrate examples of rl and rz calculated from (20) and (21), respectively, 
for three wavelengths typical of the three regimes of linear water waves (e.g. Le MehautC 
1976): 

X = 295 km, h/h = 0.01 - shallow water (h /h  < 0.05) 

h = 26.2 km, h/X = 0.15 -intermediate (0.05 < h /h  < 0.5) 

X = 4.00 km, h/X = 1 .O -deep water (h/X > 0.5). 

At the ocean surface rI and r2 have the same sign at all three wavelengths, which corresponds 
to prograde particle motions (as can be seen from (I)). Fig. 3 shows that in the ocean hori- 
zontal displacements are much larger than vertical displacements for small h/X. In the 
intermediate case the displacement components are comparable at the surface, while the 
horizontal component is much larger at depth, and for h/X > 0.5 the components are almost 
equal at all depths (circular particle orbits) and both decrease rapidly with depth, becoming 
quite small near the ocean bottom, Although it does not show on the scale of Fig. 3, r&) 

), : 26.2krn 

-12 - 8  - 4  0 

x 1 ~ - 5  

A : 4 . 0 0 k m  

~10.' 

Figure 4. Tsunami displacement eigenfunctions is the solid earth with the same model parameters and 
normalization as Fig. 3 .  
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The tsunami mode and its excitation 9 
does not vanish at z = 0 but is slightly negative there, changing sign when, approximately, 
z = -3pc2/(4pk). (This point is typically only a few metres above the ocean bottom.) Thus 
r2 is indeed continuous at z = 0 (while rl is not), although a comparison of Figs 3 and 4 
does not make this clear. As Fig. 4 shows, the displacement eigenfunctions are orders of 
magnitude smaller in the solid earth than near the ocean surface, Both components exhibit 
an eventual decay with depth, controlled by the factor exp(-kz) which appears in (21), 
and rl has a sign change near z = l/k. 

Finally, we note that the wavelengths used in Figs 3 and 4 were chosen deliberately to be 
comparable to the modes (of angular order 135, 1525 and 10000) illustrated in comparable 
figures by Ward (1980). The two sets of results show essentially perfect agreement for the 
ocean layer, while the differences in the solid earth, which are quantitative rather than 
qualitative, are due to differences in the assumed elastic earth structure, The match is worst 
at the shortest wavelength, because only the top few kilometres of the solid earth are 
significantly penetrated by the displacement eigenfunctions and the elastic half-space is 
much more rigid in the upper few kilometres than the PEM-0 model used by Ward. 

Energy integrals and Hamilton’s principle 

In this section and the following two we turn to the problem of the excitation of the 
tsunami mode by point sources within the solid earth. We apply the variational technique 
of Saito (1967), extending its application to the Rayleigh-wave modes of a flat earth, as 
presented by Aki & Richards (1980), to the tsunami excitation problem. 

Motivated by Hamilton’s principle, we construct a Lagrangian L for the tsunami mode 
in which the energy densities are averaged over time and horizontal spatial coordinates. 
We proceed separately in the fluid and solid domains, beginnings with the solid. Following 
Aki & Richards (1980), we substitute (1) into the expression (AR7.63) for the Lagrangian 
density of an isotropic elastic solid, average so that the terms sin2(kx-ot) and cos2(kx-wt) 
are replaced by 1/2, and integrate over z. Using brackets to denote the averaging process, 

(LWEd) = ‘/2 [o’Z, - kZZz - kI3 -Z4] (23) 

where the energy integrals Il , Zz, Z3 and I4 are given by 

ca 

Z3 = (Xr, dr2 -pr2  “) dz 
0 dz dz 

as in (AR7.74). Zl pertains to the kinetic energy in the solid and Zz,f3 andZ4 pertain to the 
elastic potential energy. 

In the fluid there are two terms contributing to the Lagrangian, corresponding to the 
kinetic energy and the gravitational potential energy. The kinetic energy contribution can be 
expressed in terms of an integral analogous to I I  , and it can in fact be integrated using Gauss’ 
divergence theorem, yielding an expression containing boundary terms. The potential energy 
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10 R.  P. Comer 
contribution inherently involves boundary terms, since the tsunami is primarily a gravity 
wave on the ocean's free surface. 

The kinetic energy density in the fluid is 

Y Z P  [($)2+ (32]* 
Substituting for u and w from (1), averaging over t and x as before, and integrating from 
-h to 0 over z we find 

(kinetic energy) = YZ oz15 (26) 

where 

One can also express the kinetic energy within some volume of an ideal, incompressible fluid 
in irrotational motion as an integral over the surface A of the volume, through the use of the 
divergence theorem. Following Fetter & Walecka (1980, equation 54.49, within the volume 

kinetic energy = '/z p /  @V@ .dA 
A 

where dA is directed outward from the volume and @ is the velocity potential, given by (1 2) 
for our purposes. If a portion of the surface bounding volume coincides with the free surface 
of the ocean z = -h, then on that portion dA = -.&l. Similarly, for a portion coinciding 
with the ocean bottom z = 0, dA = i d A .  Hence by choosing a prismatic volume bounded by 
the free surface and ocean bottom, then averaging over time and horizontal coordinates, we 
find 

(kinetic energy) = '/z p 

Using (1 2) and (1 5) to evaluate 4 and a$/az, (29) becomes identical to (26), (kinetic energy ) = 
'/z wzZs, except that Z5 is given by 

(27) and (30) must, of course, be equivalent. A way to confirm this equivalence is to inte- 
grate (27) by parts using (1 5 ) .  Both expressions for I5 are useful. 

Again following Fetter & Walecka (1980, equation 54.5 l), the gravitational potential 
energy of the fluid is given by 

gravitational potential energy = 1/2 p , i  V z d A  
A 

where 77 is given by (6) and (1), and A is an area on the free surface z = -h of the fluid. A 
term involving the deformation of the lower surface of the fluid is neglected in ( 3  l), but this 
is consistent with our neglect of gravity in the solid where a term of the same order is 
ignored, and 77 is in practice much larger than the amplitudes of the vertical displacement of 
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The tsunami mode and its excitation 11 
the ocean bottom. Next, averaging as before, we find 

(gravitational potential energy) = '/2 16  (32) 

Finally, subtracting (32) from (26), we have the Lagrangian in the fluid 

and combining (23) with (34) gives the (averaged) Lagrangian for the ocean-earth system, 

( L  ) = (LSOfid) + (Lfl"u'd) = '/z [w211 -k2Z2 - kZ3 -14 + 0 2 z 5  - 161 .  (35) 

The next step is to confirm Hamilton's principle, that is, to demonstrate that ( L )  is 
stationary for displacement-stress vectors satisfying (3) and (1 5), and boundary conditions 
(16), (17) and (18). We first show that ( L )  itself vanishes in this case. 

We begin by multiplying the third equation of (3) by r l ,  the fourth equation of (3) by 
r 2 ,  and adding. Next we integrate from z = 0 to m, by parts where possible, and finally use 
the first two equations of (3) to eliminate r3 and r4 from the integrands in which they 
remain. This yields 

(30) and (32) give the analogous result for the fluid, 

Adding (36) and (37), imposing the boundary conditions (16), (17) and (18), and noting 
that in (37), rl(0) = rvd(0), we find 

w211-k212-k13-f4+ w21s-16=0. (38) 

Hence by (35) the averaged Lagrangian vanishes. 
We turn now to the task of demonstrating that ( L  ) is stationary with respect to variations 

in rl(z) and rz(z),  as suggested by Hamilton's principle. That is, we show that 6 ( L  ) vanishes 
to first order in the variations 6rl(z) and 6r,(z). 

From (14) it follows that, for the solid, 

02611  -k2612-k6Z3-614= [ - r36r1  - r 4 6 r 2 ] r  (39) 

using the relations 6(drl/dz) = d(6rl)/dz and G(dr,/dz) = d(6r2)/dz, applying integration by 
parts to the terms containing these quantities, and simplifying some terms using (3). 

For the fluid it is straightforward to show from (33) that 

6I6 = p g r 2 t - k )  6r2(-h). (40) 

A similar expression for 61, follows directly from (30), but it is not useful here because it 
involves 6r1(0) ,  which has different values in solid and fluid. (This ambiguity does not occur 
in (39) because there 6rl(0) is multiplied by r3(0),  which always vanishes.) Instead, we start 
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12 R.  P. Comer 

from (27) ,  which yields 

615 = p (rl 6rl t r26r2)  dz 

0 P 

k - h  
= -- r16r2  I 

using 6rl = (-l /k)d(br,)/dz and (l /k)dr,/dz t rz = 0, which both follow from (15). This 
has the desired property of not involving 6rl(0). 

26 ( L )  = w2611 -kz6Z2 -k613 -&I4 t oz615 -&I6 = -r3(00)6Yl(m)-~4(w)6~2(w) 

Finally, it follows from ( 3 9 ,  (39), (40) and (41) that 

o2 

k 
t p - r1(-h) 6r,(-h) -pgrz(-h)6r,( -h) .  (42) 

r3(w) = r4(w) = 0, from ( 3 )  and (18), and imposing the boundary conditions (16) and (17), 
the right-hand side of (42) vanishes. Thus, in accord with Hamilton’s principle, 

oz61~-k261z-k613-614t o z 6 1 5 - 6 1 6 =  0. (43) 
A useful formula for tsunami group velocity follows from the results that the Lagrangian 

(35) vanishes when r(z) satisfies the equations of motion and boundary conditions 
corresponding to a tsunami, and that it is stationary about that solution. By varying o and k 
in (38) and applying (43) one finds 206011-2k6k12-6k13 t 2 0 6 0 1 5  = 0, and equating 
U to 6 o / 6 k ,  

I2 t I3 /2k  
U =  

where c = o / k  is the phase velocity 
4 1 1  + I s )  

(44) 

Point force response: the tsunami residue 

Here we consider the response of the ocean-earth system to a point force ( F x ,  F,, F,) 
applied at x = 0, 3’ = 0, z = d with d > 0 and varying harmonically in time according to 
exp(-iot). It will be shown that the tsunami normal mode eigenfunctions provide a 
compact representation of the response in the far-field. 

As Aki & Richards (1980) state, the point force is equivalent to a discontinuity in 
traction on the horizontal plane z = d such that 
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The tsunami mode and its excitation 13 

(AR7.119, AR7.120) where TT,  ST and RF are the cylindrical vector harmonics defined 
in (AR7.117) and (AR7.113). We now use a cylindrical coordinate system (r ,  @,z) such that 
x = r cos@ and y = r sin@ with orthogonal unit vectors i ,  6 and 2. The coefficients f ~ ,  fs 
and fR, are given by (AR7.129, (AR7.127) and (AR7.128). respectively. 

The solution for the displacement, in solid and liquid, due to the time-harmonic point 
force has the form given by (AR7.13 l) ,  

and the corresponding horizontal traction is 

where it is important to note that r = (rl , r 2 ,  r 3 ,  r4) and 1 = ( I l ,  Z2) do not represent normal 
mode eigenfunctions, because the equations of motion now include the point force, and 
hence are no longer homogeneous, so that there is no longer a dispersion relation and k is 
independent of w .  

It is easy to show, however, that except at the source depth the equations of motion in 
:he solid are satisfied if r satisfies (3) and 1 satisfies (AR7.24), which were derived for the 
Rayleigh-wave (and tsunami) and Love-wave displacement-stress normal mode eigen- 
functions, respectively. In the fluid, where shear stresses must vanish, 1 = 0 and the equations 
governing r can be readily demonstrated by introducing the velocity potential 

where Y r ( r ,  4) is the scalar harmonic defined by (AR7.113). Requiring that (46) and (48) 
be consistent with (4) aIid (5) implies that r ,  and r2 must satisfy (1 5), and by requiring that 
shear tractions vanish in the fluid and that (47) and (48) be consistent with (9), we find that 
r3 and r4 must satisfy (14). Finally, substituting (48) into (1 1) and invoking (1 5), it can be 
shown that rl and r2 satisfy ( 1  7). 

In addition to the free surface condition, r and 1 must satisfy boundary conditions 
ensuring the continuity of the vertical displacement and vertical traction at the solid-fluid 
interface, yielding (16) with k-, m- and a-dependence implicit, and Z2(k, in, 0, 0) = 0. Also, 
for z-+m 1 and r must either vanish or correspond to down-going body waves, and last, but 
very important, is the condition that at z = d the traction have the discontinuity prescribed 
by (45). Thus 
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14 R. P. Comer 

1. r can be constructed in the following manner, 
We next obtain the tsunami component of (46), which clearly depends on r and not on 

We require r '  and r" each satisfy ( 3 )  in the solid and (14) and (15) in the fluid, and that 
they independently satisfy the interface boundary conditions of continuity of vertical 
displacement and continuity of the vertical component of traction on the horizontal plane. 
Hence 

( 5 1 4  ' solid (0) = ' fluid (0) 
r2 r 2  

0 d i d  (0) = 
r2 r2 

fluid (0) 

2 
solid(0) = ' fluid(0) = pw .; fluid(0) 

k 
r 4  7 4  (51c) 

where, for convenience, we show explicitly only the z-dependence of r' and r". In addition, 
we let r" be continuous at z = d  and require that it satisfy the radiation condition (down- 
going waves or vanishing displacements) while r' = 0 for z > d and r' has a discontinuity in 
stress at z = d ,  so that 

ri ( d - )  = o 
ri(d-) = 0 

rJ(d-) = -fs 
rA(d.-) = -fR . 
The boundary conditions (51a), (51c) and (52) completely constrain r'. Also, given the 
definitions of and conditions on r r  and rrr, it is clear that r as given by (50) satisfies.the 
equations and boundary conditions governing it, except for (1 7) and the vanishing of the 
shear traction at z = 0. These final two conditions yield , 

(538) 

rSSOlid(0) t ArJsolid(0) = 0, (53b) 

competing the conditions on r" and also defining A(k, m, a). 
The tsunami contribution to (46) comes from the 'tsunami pole' where w and k = kt 

satisfy the tsunami dispersion relation and A(kt, m, w) = 0. Taking the residue at this pole 
we have 
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The tsunami mode and its excitation 15 

This is the same, essentially, as the corresponding result for Rayleigh waves, and the details 
of treating the integral over k are identical in both cases, except that for Rayleigh waves 
there may be several poles, corresponding to the fundamental mode and higher modes. Only 
one pole exists for the tsunami mode, equivalently there is only one branch of the tsunami 
dispersion curve; a more detailed discussion of this point has been given by Okal (1982). 
Note, however, that our model of the ocean is appropriate for tsunamis but not for Rayleigh 
waves, since the compressibility of the ocean is neglected. A similar model incorporating the 
compressibility of the ocean could be used for both tsunamis and Rayleigh waves, but has no 
advantage over the incompressible ocean model for the former. A further extension would 
be to include a realistic density stratification in the ocean, in which case the internal gravity 
modes of the ocean would be present (eg .  Lighthill 1978), but this complication would like- 
wise have little advantage for the accurate modelling of tsunamis. 

The displacement in (54) can be expressed in terms of the normal mode tsunami eigen- 
functions and the energy integrals defined in the previous section. To show this we derive an 
expression for A and differentiate it with respect to k by means of a variational method. 
First we take note of two quantities having the useful property of being constant with 
respect to z .  In the solid (and for 0 G z < d in particular), 

( 5 5 )  
I I I  

d 
- ( r ; ' r ; - r ;r ;I+r lr i  - - r 2 r 4 ) = 0  
dz 

which follows directly from the fact that r '  and rrr both satisfy (3), hence rrr i - r i  r l  + 
r2 r4 -r;r: is invariant with respect to z in the solid. Similarly, in the fluid ( - h  < z < 0) we 
have from (1 5) 

d 

dz 

so that r ;  r l  -r;  r ;  is invariant. 
Now, combining (51c) with (51d) we have r l ( 0 ) -  p(02/k)r ;*uid(0)  + A[r;(O) - 

p(02/k)r;*"id(0)J = 0. Multiplying this result by rl(O),  multiplying (53a) by -pgrl(- h) ,  
multiplying (53b) by r;'"lid(--h), adding, and solving for A yields 

I I  I 

- (r;r:-r;ry) = o (56) 

a = -Y1/Y2 (57) 

where 

o2 
t p - r i ( - h )  r i ( - h )  - p g r ; ( - h )  r i ( - h ) .  

k 

Defining If, I:, I:, I:, I: and I: by (24), (30) and (33) with r a  substituted for r,  it is clear 
from (35), (36) and (37) that (58a) can be rewritten as 

y1= 2 [w2Zr;' -k2Z: - kZ; ~ Z: t 02Z: -Z: ] + r: (m) r;( (m) + r l ( m )  r:(=). ( 5 9 )  
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16 R. P. Comer 
Next we consider the variation in A due to a variation in k about the point where 

k = k,  and A(k, m, o) = 0 or, equivalently, where r" is a tsunami eigenfunction. At this 
point y1 = 0 according to (59), (38) and (18) with r" substituted for r.  Hence the variation 
6 y2 has no effect on 6 A and we have simply 

6 A = -6yl/yZ. (60) 

671 = -(4kI; t 2I i )6k .  

From (59) we obtain, using (43),  (18) and the requirement that 6ry(m) = 6ri(m) = 0 ,  

(61) 

The evaluation of yz at the point where r" is a tsunami eigenfunction is accomplished with 
the aid of the two depth-independent quantities noted previously. From (17), (56) and 
(5 1 4  

w2 
p - r : ( -h)r ; ( -h)  - p g r ; ( - h ) r ; ( - h )  

k 

o2 
= p - [?I(-/?) r&h) - r ; ( -h )  r p z ) ]  

k 

o2 

k 
= p - [r;flu'd(o) r ; (O)  -v;(o) rI'flU'd(O)] 

o2 = ~ 

k 
fluid (0)  r i  (0) - ri (0) r: (0). 

Then, combining (62) and (58b) and applying (16b), (55) and (52) we find 

y2 = ,.:~~lid(o) r;solid (0) - r ;  sobd(o) I;' "t id (~ )  t r;(o) r; (OY - r; (0) r l ( 0 )  

= r ; (d )  r; (d -) - r ;  (d -) rS'(d) t r; (d) r; (d-) - r; (d-) r: ( d )  (63) 

= - f s r ; ( d )  - fRr ; (d ) .  

Finally, substituting (61) and (63) into (60), it is clear that 

where the quantities on the right are all evaluated at k = k t .  Using (44), an equivalent 
relation is 

The result (65) may be readily substituted in (54). The sum over m is readily evaluated 
using the values assigned t o f s  and fR in (AR7.127) and (AR7.128),f~(k, l)=(-F, t i F y ) / 2 ,  
f s ( k ,  -1) = (F ,  + iFy) /2,  and fs = 0 for m # k 1, and fR (k ,  0 )  = F, and fR = 0 for m # 0 
Since at the pole where k = k,, r" (k,, m,  z, w )  is a tsunami eigenfunction, we drop the 
primes and replace it by r(z), reverting to our earlier notation. Likewise we replace kt by 
k ,  I;' by 11, and I;' by 15, but note that these quantities are all implicit functions of w .  Also, 
we are interested only in the result for the far-field, where the tsunami is distinct from other 
waves radiated by the point force. Thus we replace SF(r ,  4) and R r ( r ,  4) by the leading 
terms of their large r asymptotic expansions corresponding to outgoing waves, given by 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/77/1/1/823083 by guest on 03 July 2023



The tsunami mode and its excitation 17 
(AR7.118). Finally we have the far-field tsunami generated by a time-harmonic point force 
at depth d in the solid earth: 

exp( -iw t )  
Utsunami (r, @,z,  t )  = - [F,r,(d) + i(F, coscft + F,, sini5)rl(d)] 

8cU(I1 + 1 5 )  

1/72 

x (2) [rl(z) exp(-in/4)~ + rz(z) exp (in/4)4 exp(ikt-1. (66) 

This is identical to the corresponding result for Rayleigh waves (AR7.143) except that there 
is no sum over higher modes, the kinetic energy for the ocean Z5 has been added to the 
kinetic energy integral Il for the solid earth and, of course, rl and r2 denote the tsunami 
normal mode displacement eigenfunctions. Hence (66) is not surprising, but neither is it 
trivial. 

Tsunami from a point moment tensor source 

The far-field tsunami response to  a point moment tensor source in the solid earth can be 
obtained by differentiating the second rank tensor Green’s function implicitly stated by 
(66). This procedure parallels perfectly that for Rayleigh waves, and just as the Rayleigh 
wave response to a point moment tensor source (AR7.149 and AR7.150), follows from 
(AR7.143) we have from (66) 

112 

Utsunami (I, @,z,  w )  = r2(z) (L) exp[i(kr + n/4)] 
8cU(Z1 + Z,) n k r  

dr, dr 1 

dz dz 
+ M,, - (d) + i[M,, cos cft + My,  sin cf t ]  (- (d) -kr,(d))) 

where the quantity in braces { 1 in (67b) is the same as that in (67a). Note that these 
equations are in the frequency domain; each moment tensor component P4ij is a function 
of w given by the Fourier transform of its time domain representation Mij ( t ) .  Also note 
that the moment tensor must be symmetric, since it represents an internal source that 
applies no torque. 

From (67) both the vertical and radial components of the tsunami from a point moment- 
tensor source can be synthesized at any depth in the ocean or earth. Since the vertical 
displacement at the ocean surface is usually the quantity of greatest interest, we note from 
(6) with u, = w ,  and (67a) that 

As before 7) is positive for upward displacement of the ocean surface, that is, displacement in 
the negative ,--direction. Here we have made the additional simplification of assuming that 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/77/1/1/823083 by guest on 03 July 2023



18 R.  P. Comer 

all the moment tensor components share a common time dependence, so that Mij( t )  = 
S(t)Mii where Mii = M i i ( a )  is now the static moment tensor, s(t = m) = 1 ,  and 

S( t )  exp(iwt) dt 

is the Fourier transform of the source time history. The time domain waveform of the 
tsunami due to the point moment tensor source can thus be obtained by operating on (68) 
with the inverse Fourier transform 

m 

exp(-iot) do. 

The relation (68) can thus be expressed in the time domain as 

v(r, cp, t )  = [M,, COS'Q + 2 ~ , ,  sin$ cos4 +My,,  sinZcplfl(r, r )  + M z z f 2 i r ,  t )  

+ [M,, cos CP + My, sin @I f3(1, t )  

wherefl(r, t),f,(r, t )  and f3(r, t )  are the inverse transforms, respectively, of 

fl(r, o) = -r,(-h)N(w) S ( o )  (h/r)"' exp[i(kr + n/4)] krl(d) 

f3(r, o) = -r,(-h)N(o)S(w) (h/r)'12 exp[i(kr + 3n/4)1 

where 

112 

N ( o )  = -___- 

This remarkably simple result permits many relations to be readily examined. For example, 
from (71) and the approximate eigenfunctions (21) we find that for the uniform elastic solid 
earth the relative tsunami excitation versus depth is governed by 

I f1 I a I kz - 1/2 I exp(-kz) 

If21aikz+1/2)exp(-kz) (73) 

I f 3  1 a 2kz  exp(-kz). 

The expressions on the right-hand side of (73) are plotted in Fig. 5 from which it is clear 
that except at extremely shallow depths the moment tensor components M,, , M,, and M y ,  
have the largest contributions to the tsunami amplitude. Also evident are the eventual decay 
of tsunami excitation with depth and the fact that this decay occurs more rapidly for short 
wavelengths and, conversely, that shallow sources produce more short-wavelength radiation 
than deep sources. Fixing the source depth d we can then plot the complex spectra given by 
(7 1) and the corresponding waveforms in the time domain, but first it is necessary to choose 
the function s(t). 
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The tsunami mode and its excitation 19 
0 5  I .0 

0 

25 km 

50 km 

75 km 

100 km 

kz z , fo rX=  17ekm 
(T: I5rninutes, h = 4 km 1 

Figure 5 .  Relative tsunami excitation versus depth for an ocean overlying an elastic half-space. 

We consider two choices, S(t)  = H ( t )  and S ( t )  = K ( r ,  t).  Here H(t) denotes the step 
function, 

t < O  

H ( t )  = 

L t > O  

and R ( r ,  t )  denotes the ramp function with rise time r ,  

t < O  

( 7 4 4  

Of course, these coincide in the limit r+O. Taking the Fourier transforms of (74a) and 
(74b), following (69), we find 

H(w) = nb(w) + i/o (7 5 a> 

exp( io r )  - 1 

w2 7 

2 sin(wr/2) 

w2 7 

R ( T ,  w )  = nb(w) + 

= n b ( o )  + exp[i(n t wr) /2] .  
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20 R.  P. Comer 
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Figure 6 .  Amplitude spectral o f f ,  (solid line), f, (dashed line) and f, (dotted line), for r = 3000 km. 
d = 5 km, T = 0, and the model parameters given in the text. 
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Figure 7.  Amplitude spectra o f f , , f 2  andf ,  as in Fig. 6 but with d = 15 km. 
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Figure 8.  Amplitude spectra off , , f ,  andf, as in Fig. 6 but with d = 50 km. 
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The tsunami mode and its excitation 21 
We now present several examples o f f l ,  f2 and f3 and examine their form in both the time 

and frequency domains. Details on the numerical computations are given by Comer (1982). 
Here we simply note that the waveform synthesis involved an application of the Fast Fourier 
Transform algorithm via the FORTRAN subroutine FOUR 1 by Norman Brenner (MIT Lincoln 
Laboratory 1967) and that the number of computations was reduced by interpolating in 
frequency using the FORTRAN subroutine SPLINE by Forsythe, Malcolm & Moler (1977). In 
all the examples the ocean depth is set at 5 km and that the solid earth is an elastic half- 
space with a! = 7.1 km s-', 0 = 4.1 km s-l and p s  = 3.1 g Initially we take S( t )  = H ( t )  
and Y = 3000 km. 

Figs 6,  7 and 8 show the amplitude spectra of f2, f l  and f3 for different source depths, 
d = 5 ,  15 and 50km,  respectively. The spectra are quite smooth, which is not surprising, 
except that in all three figures f l  has a zero. This reflects the zero in its excitation curve as 
shown in Fig. 5. A decrease in amplitude with increasing source depth is evident, especially 
for higher frequencies. It is also clear that the amplitude spectrum of fl is substantially 
smaller than the other two. The fact that we have chosen a particular value of Y for these 
examples is unimportant, since it is clear from (71) that the amplitude spectra scale 
according to r-'j2 independently of w. 

Fig. 9 illustrates the phase spectra of f l  and fi,  which are identical if one neglects the 
jump of n in the phase of fi at the point where [ fi(w) I = 0. The phase spectrum of f3 is 
identical to the others except for a phase advance of n/2 ,  which is indistinguishable on the 
scale of the figure. We must note that the phase illustrated in Fig. 9 is not relative to the 
origin time of the event, but rather is relative to the long-wave arrival time to = r/&. This 
corresponds to replacing k(w)r  by k(w)r-wt, in (71). The phase is close to zero for the 
low frequencies and a phase delay (reflecting the tsunami dispersion) occurs for the higher 
frequencies, As in the case of the amplitude spectra, the particular value of r is unimportant 
since, neglecting the frequency-independent terms, the phase spectra of f l ,  f2 and f3 are 
proportional to r only through the term r [ k ( w ) - o / G ] .  

The waveforms synthesized from the spectra illustrated in Figs 6-9 are shown in Figs 10, 
11  and 12 for source depths of 5, 15 and 50km,  respectively. As the amplitude spectra 
indicate, f l  is much smaller than f2 or f3. The zero in the spectrum of f l  is reflected in the 
relative complexity of its waveform. Also, the overall amplitudes and the proportion of high 
frequencies decrease with source depth and the difference in the initial phase off3 compared 

Y 

0 0 02 0.04 0.06 0.08 0. I 
ANGULAR FREQUENCY, rod /sec 

Figure 9. Phase spectrum, relative to t o  = r / ( g / ~ ) ' ' ~ ,  off ,  corresponding to  Figs 6 ,  7 and 8. O n  this scale 
the phase spectra o f f ,  andf ,  arc indistinguishablc from thc curve shown here. 
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22 R. P. Comer 

10,000 12,000 14,000 16,000 18,000 

Figure 10. Elementary waveforms f,(r, f), f2(r, t )  and f3(r, t )  for r = 3000 km, d = 5 km, T = 0, and the 
model parametersgiven in the text. Each interval on the vertical scale is 0.5 cm/1OZ7dyn cm. 

TIME, SEC 

10,000 12,000 14,000 16,000 18,000 

TIME, SEC 

Figure 11. Elementary wavefornis as in Fig. 10 f o r r  = 3000 km, d = 15 km and T = 0. 
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The tsunami mode and its excitation 23 

t 
10,000 12,000 14,000 16,000 18,000 

TIME, SEC 

Figure 12. Elementary waveforms as in Fig. 10 for r = 3000km, d = 50 km and T = 0. 

10,000 12,000 14,000 6.000 18,000 
TIME, SEC 

Figure 13. Elementary waveforms as in Fig. 10 for r = 3000 km, d = 15 km and T = 120 S. 
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24 R .  P. Corner 

t- 

0 1000 2000 3000 4000 5000 6000 

TIME, SEC 

Figure 14. Elementary waveforms as in Fig. 10 for Y = 300 km, d = 15 krn and T = 0. Each interval on the 
vertical scale is 5 cm/1OZ7dyn cm. 

to f1 and fz is evident. Like Fig. 11, Fig. 13 shows the waveforms for r = 3000 kni and 
d = 15 km, but with S ( t )  = R(T,  f) and T = 120 s. Clearly setting the rise time even to this 
rather large value has little effect on the waveforms except for the later dispersive portions. 
Fig. 14 shows another example with d = 15 km and T = 0, but with r = 300 km. Closer to the 
source the waveforms are larger in amplitude and less dispersed, which is not surprising. 

Having compared a range of examples of the elementary waveformsfl ,fi andf, it is very 
instructive to see which ones are radiated by some simple double couple sources. For 
example, a source whose only non-zero moment tensor components are M x y  = M y x  = M o  
excites a tsunami of the form 

rl(r, 4,  t )  = M ,  sin24fl(r, t).  (764  

This is a pure strike-slip source whose lower-hemisphere focal mechanism is illustrated in 
Fig. 15(a). With non-zero componentsM,, = M o  andM,, = M O ,  

rl@, 4, t )  =Mo [-sin24f1(r, f )  +f&, f > 3  (76b) 

and the source has a pure thrust mechanism with a dip of 45", as illustrated in Fig. 15(b). 
Finally, if M y ,  = Mzr = M, are the only non-zero moment tensor components then 

dr, 4, t )  = M o  sin4f3(r, t>. (76c) 

This third example corresponds to the vertical dip-slip mechanism of Fig. 15(c). The arrows 
next to the mechanisms in Fig. 15 indicate azimuths for which the tsunamis have the 
simple forms 77 = M o f l ,  = M o f z  and 17 = M o f 3 .  Note that since fl consistently has a much 
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The tsunami mode and its excitation 25 

MOfI Mofz 

a. b. f 

C. 

Figure 15. Three simple double couple focal mechanisms: (a) strike-slip, (b) 45" thrust and (c) vertical 
dip-slip. The lower hemisphere is shown and compressional quadrants are shaded. The arrows show 
directions in which the tsunami waveforms from a point source correspond to elementary waveforms 
multiplied by the scalar moment. 

smaller amplitude than f2 or f3 in Figs 10-14, the strike-slip mechanism (Fig. 1 5a, equation 
76a) is substantially less efficient for tsunami generation than the dip-slip mechanisms. This 
is in accord with the observation (e.g. Iida 1970) that tsunamis generated by strike-slip 
earthquakes are rare and never large, although the rarity of large submarine strike-slip 
earthquakes themselves is undoubtedly also a factor. 

Finally, we note that the strike-slip mechanism of Fig. 15(a) and the vertical dip-slip 
mechanism of Fig. 15(c) correspond to  examples presented by Ward (1980). Comer (1982) 
has shown by a direct comparison that the waveforms computed from the flat earth normal 
mode theory, for these two mechanisms, are in excellent agreement with Ward's. There are 
minor discrepancies, but these are surprisingly small in view of the substantial differences 
between the solid earth models that were used, Because of the efficiency of the Fast Fourier 
Transform (and, to a small extent, because of our use of analytic eigenfunctions) the flat 
earth calculations are substantially faster. 

Discussion 

We have solved the tsunami mode excitation problem for an arbitrary depth dependence of 
the density and the elastic moduli in the solid earth, but the computed examples are 
restricted to the use of the approximate, analytic eigenfunctions for an elastic half-space 
underlying the ocean. This restriction could be removed through a numerical solution of 
(3). As for the case of seismic surface waves, there are a number of possible approaches to 
this problem. For tsunamis, the solution must be subject to the condition (18) and be 
matched to (19) and (1 7) through the ocean floor boundary conditions (1 6). 

One possibly important effect of a realistic solid earth model is the influence of a sedi- 
mentary layer at the ocean bottom. This problem has been examined, with regard topropa- 
gution, by Okal (1982) and shown to be negligible for practical cases. Low rigidity of the 
ocean floor may be important for tsunami excitation by very shallow sources, however. 
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26 R. P. Comer 
Another natural extension of our model is the inclusion of finite earthquake sources. This 

has been partially developed by Comer (1982), and applied to  an analysis of real tide gauge 
data. Such further developments and applications will be considered in future papers. Also, 
a direct application of the point source solution presented here, a check on the genera! 
validity of the traditional, partially coupled tsunami generation models, is the subject of a 
companion paper (Comer 1984). 

Aclcnowledgments 

I would like to thank Kei Aki, Kinjiro Kajiura and Steve Ward for helpful discussions, Inge 
Knudson for assistance in drafting the figures, Jan Nattier-Barbaro for typing and word- 
processing, and Sharon Feldstein for administrative assistance. During the final preparation 
of this paper, I had the support of a Bantrell Postdoctoral Fellowship at the California 
Institute of Technology. This research was supported by the National Science Foundation, 
grant EAR80-I 835 1. 

References 

Aki, K .  & Richards, P. G., 1980. Quantitative Seismology, Vol. 1, W. H. Freeman, San Francisco, 

Alexeev, A. S. & Gusiakov, V. K . ,  1976. Numerical modelling of tsunami and seismic surface wave 
generation by a submarine earthquake, in Tsunami Research Symposium 1974, Bull. R .  Soc. 

Ando, M., 1982. A fault model of the 1946 Nankaido earthquake derived from tsunami data, Phys. 

Carrier, G. F., 1971. The dynamics of tsunamis, Lectures in Appl. Math., A m .  Math. Soc., 13, 157-~189. 
Comer, R. P., 1982. Tsunami generation by earthquakes, PhD thesis, Massachusetts Institute of 

Comer, R. P., 1984. Tsunami generation: a comparison of traditional and normal mode approaches, 

Fetter, A. L. & Walecka, J. D., 1980. Theoretical Mechanics of Particles and Continua, McGraw-Hill, 

Forsythe, G. E., Malcolm, M. A. & Moler, C. B., 1977. Computer Methods for Mathematical Compu- 

Hammack, J. L., 1973. A note on tsunamis; their generation and propagation in an ocean of uniform 

Hammack, J. L. & Segur, H., 1978. Modelling criteria for long water waves, J. FluidMech., 84, 359--373. 
Iida, I., 1970. The generation of tsunamis and the focal mechanism of earthquakes, in Tsunamis in the 

Kajiura, K., 1963. The leading wave of a tsunami,Bull. Earthq. Res. Inst. Tokyo Univ., 41, 535-571. 
Le MBhautB, B., 1976. An Introduction t o  Hydrodynamics and Water Waves, Springer-Verlag. New York, 

Lighthill, M .  J . ,  1978. Waves in Fluids, Cambridge University Press, 504 pp. 
Momoi, T., 1962. The case of instantaneously and uniformly elevated elliptic wave origin, Bull. Earthq. 

Officer, C. B . ,  1974. Introduction to Theoretical Geophysics, Springer-Verlag, New York, 385 pp. 
Okal, E. A., 1982. Mode-wave equivalence and other asymptotic problems in tsunami theory, Phys. Earth 

Podyapolsky, G. S . ,  1970. Generation of the tsunami wave by the earthquake, in Tsunamis in the Pacific 

Saito, M. ,  1967. Excitation of free oscillations and surface waves by a point source in a vertically hetero- 

Stoneley, R., 1963. The propagation of tsunamis, Ceophys. J. R .  astr. Soc., 8,64-81. 
Takahashi, R., 1942. On seismic sea waves caused by deformations of the sea bottom, Bull. Earthq. Res. 

557 pp. 

N .  Z., 15,243-251. 

Earth planet. Int.,  28, 320--336. 

Technology. 

Geophys. J .  R .  astr. Soc., 77, 29-41. 

New York, 570 pp. 

tations, Prentice-Hall, Englewood Cliffs, 259 pp. 

depth, J.  Fluid Mech., 60, 769-799. 

Pacific Ocean, pp. 69- 83, ed. Adams, W. M., East-West Center Press, Honolulu. 

315 pp. 

Res. Inst. Tokyo Univ., 40,297-307. 

planet. Int., 30, 1-11. I 

Ocean, pp. 19-32, ed. Adams, W. M., East-West Center Press, Honolulu. 

geneous earth, J. geophys. Res., 72,3689-3699. 

Inst. Tokyo Univ., 20, 375-400. 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/77/1/1/823083 by guest on 03 July 2023



The tsunami mode and its excitation 27 
Ursell, F., 1953. The long wave paradox in the theory of gravity waves, Proc. Cambridge Phil. SOC., 49, 

Ward, S .  N., 1980. Relationships of tsunami generation and an earthquake source, J.  Phys. Earth, 28, 

Ward,S. N.,  1981. On tsunami nucleation 1. A point source,J. geophys. Res., 86, 7895-7900. 
Ward, S. N., 1982a. Earthquake mechanisms and tsunami generation: the Kurile Islands event of October 

13, 1963,Bull. seism. SOC. Am., 12,  759-778. 
Ward, S. N., 1982b. On tsunami nucleation 11. An instantaneous modulated line source, Phys. Earth 

planet. Int., 21, 213-285. 
Wu, T. Y., 1979. On tsunami propagation - evaluation of existing models, in Tsunamis: Proceedings o f  

the National Science Foundation Workshop, pp.  110-143, eds Hwang, L.-S. & Lee, Y .  K., Tetra 
Tech Inc., Pasadena. 

685 -694. 

441 -474. 

Yarnashita, T. & Sato, R., 1974. Generation of tsunami by a fault mode1,J. Phys. Earth, 22,415-440.  D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/77/1/1/823083 by guest on 03 July 2023


