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Summary. Tsunami generation by earthquakes in a flat, isotrépic, elastic,
vertically stratified earth underlying a uniform-depth, incompressible ocean
can be studied in terms of the tsunami normal mode of the combined ocean—
solid earth system. We derive, in a way that demonstrates their natural
extension from traditional approaches to tsunami theory, the equations and
boundary conditions governing the tsunami mode displacement and stress
eigenfunctions, then solve the excitation problem by a variational method.
This leads to a straightforward expression for the far-field tsunami displace-
ments due to a point moment tensor source in the solid earth. Numerically
computed spectra and waveforms reveal clearly the dependence of the far-
field tsunami on the source depth, duration, moment and mechanism.

Introduction

A central problem in tsunami generation is to determine the waves excited by a realistic
earthquake source buried in the solid earth underneath the ocean. Early work on tsunami
generation frequently involved some time-dependent deformation, circular, elliptical or
rectangular in shape, driving an ocean which overlay an otherwise rigid bottom (e.g.
Takahashi 1942; Momoi 1962; Kajiura 1963). A few authors have extended this approach to
use more realistic, static vertical deformation patterns due to earthquake fault models and
observations, rather than simple but arbitrary shapes and patterns; Ando (1982) provides a
good review, The correctness of even the latter models is not readily apparent, however,
since the time-dependence of the deformation is somewhat arbitrary and the full interaction
of the ocean and solid earth is approximated by a partial decoupling in which the solid earth
can drive the ocean but no reciprocal action is permitted.

One way to incorporate the full ocean—earth interaction into a model of tsunami
generation by a realistic earthquake source is to use normal mode theory similar to that
applied to seismic surface waves. Tsunamis are indeed guided surface waves, closely akin to
Rayleigh waves. They differ most significantly in that the restoring force is gravitational in
one case and elastic in the other, and that tsunamis consist of only one mode, corresponding
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2 R. P, Comer

to gravity waves on the ocean surface. Therefore, in this paper we derive the equations and
boundary conditions governing the tsunami mode of a flat, uniform-depth ocean overlying
an elastic isotropic solid earth with elastic parameters and density varying only with depth.
The far-field tsunami excited by a point moment tensor source is then obtained in terms of
the normal mode eigenfunctions by a variational technique extended from the one
developed by Saito (1967) for seismic surface wave excitation,

Several other investigators have attacked the problem of tsunami generation with the
ocean and solid earth fully coupled. Podyapolsky (1970) and Alexeev & Gusiakov (1976)
considered a point earthquake source in the solid earth, which was represented by an elastic
half-space; however, the accounts of their methods are rather incomplete and only a few
results are illustrated. Yamashita & Sato (1974) extended a similar model to a finite, moving
source, but the explanation of how they perform the key step of evaluating the residue at
the ‘tsunami pole’ is omitted. And although the works just cited are all based on flat earth
models, none make reference to the tsunami normal mode of a flat ocean—earth system.
Ward (1980, 1981, 1982a, b) has introduced normal modes in the tsunami generation
problem, but in the context of a spherically symmetric ocean—earth model, He formulated
the equations of motion in a manner originally applied to the Earth’s free oscillations and
made use of a very general result to obtain the tsunami mode excitation.

Ward’s results are useful and important, yet it is nonetheless also rewarding to explore
tsunami normal mode excitation using a flat earth model. At the very least, two independent
solutions of very similar problems can be used to check one another. Also, no significant
increase in accuracy can be obtained simply by going from a flat earth model to a spherical
one, since the tsunami mode eigenfunctions (unlike those of long-period seismic surface
waves) do not penetrate the solid earth very deeply, and a correction for geometric spread-
ing on a spherical, rather than flat, surface is easily applied. Of course, the geometric
spreading of real tsunamis is different from either idealized case, due to the bathymetric
variations (resulting in variations in wave speed) in the real oceans.

A more substantial difference between the present work and Ward’s (1980) is that we
consider only the most important forces. Elastic, gravitational and inertial terms, and the
effects of self-gravitation, are all included by Ward in both the solid earth and ocean layer.
However, tsunamis are basically ocean surface gravity waves and elastic terms in the ocean
are of very secondary importance. Lighthill (1978), for example, notes that acoustic and
gravity waves are fully decoupled in the oceans and Stoneley (1963) demonstrated that
modelling the ocean as an incompressible fluid is a very good approximation with respect to
tsunami propagation. Ward’s exploration of the energy partitioning in tsunami modes
confirms this: the gravitational and inertial forces are of large and roughly equal significance
in the ocean, and also, in the solid earth elastic forces are much more important than inertia
or gravity. Actually, in terms of tsunami propagation, displacements of the solid earth can be
neglected altogether, which has been the traditional approach in tsunami studies, yet they
are crucial in terms of tsunami mode excitation by sources within the solid earth.

Hence we now consider surface gravity waves on an incompressible fluid in a uniform
gravitational field overlying an elastic earth in which gravitational forces are ignored and for
which it will be shown that elastic forces are far more important than inertia. A side benefit
is that we are able to build a conceptual bridge between the traditional approach to tsunami
modelling based on the hydrodynamics of an incompressible, flat ocean (e.g. Kajiura 1963)
and the normal mode methods. We first develop the equations governing the tsunami mode,
then study its excitation. We note here that the flat earth excitation problem differs
substantially from the corresponding spherical earth problem. There is a continuum of
frequencies and wavenumbers for a flat earth but frequencies and angular orders are discrete
on a spherical earth. Also, the normal modes of a finite body form a complete basis for the
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The tsunami mode and its excitation 3

small amplitude oscillations of the body but those of an infinite body, like the flat earth, do
not. Consequently the theoretical development of the solution to the excitation problem
given here is totally distinct from Ward’s (1980). Finally, we remark that, in common with
Ward, we assume the ocean to be inviscid and deal only with linearized equations of motion
and boundary conditions. The former assumption was justified by Stoneley (1963) and
linearity, which is usually assumed in seismology but often not in hydrodynamics, is
considered in the following, brief section.

Linearity

Exact hydrodynamic equations are non-linear, due to both convective inertia terms and
boundary conditions. However, it is widely agreed that non-linear effects are unimportant
in the generation and deep ocean propagation stages of a tsunami and can become important
only in its coastal interactions (Carrier 1971; Le Méhauté 1976; Wu 1979). Hammack (1973)
and Hammack & Segur (1978) found that for one-dimensional propagation non-linear terms
become important after a certain time, which they established clearly, but, as Wu (1979)
pointed out, in two-dimensional propagation the decrease in amplitude due to geometric
spreading eliminates this effect.

One clear condition for the linearity of waves of long wavelength A is that the amplitude
Mo be small compared to the water depth 4. That is,

no/h <1

(In fact it follows from the results of the next section that for small #/\ the non-linear term
Y2v* in the Bernoulli equation (8) is much smaller than the term d¢/d¢ if this condition is
satisfied.) Another widely posed criterion for the linearity of long waves is whether the
Ursell parameter noM\*fh® is small with respect to 1 (Ursell 1953; Le Méhauté 1976).
Generally the Ursell parameter is not too large but can be of order 1 near the origin of a
tsunami (Hammack & Segur 1978; Wu 1979). However, the Ursell parameter is essentially
a ratio of the relative importance of non-linear effects to linear dispersive effects for long
waves and if both effects are small that ratio may not be significant. For example, the use of
linear dispersive theory should be correct as long as non-linear effects are small, even if
dispersion is negligible.

Indeed, linear non-dispersive theory, based on the small amplitude condition and the
condition

i\ < 0.05

is often applied to tsunamis (e.g. Ando 1982) and is valid for large wavelength sources and
short propagation paths. In this case all waves travel with the speed \/gh, where g is the
acceleration of gravity. An improvement on this is the linear Boussinesq theory in which a
small correction, good at long and moderate wavelengths, is applied to account for
dispersion (e.g. Carrier 1971).

Throughout this paper the long-wavelength assumption is avoided, however, and we use
linear dispersive hydrodynamic theory valid for all wavelengths, This is advantageous in
treating point sources which have more short-wavelength radiation than real tsunamis and,
of course, the validity of linear superposition makes powerful and straightforward methods
readily applicable.

The tsunami mode

We consider plane water waves propagating across a flat, ideal, incompressible ocean of
uniform depth A overlying a solid isotropic earth whose elastic parameters and density vary
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4 R. P. Comer

only with depth. Fig. 1 illustrates the geometry and coordinate system chosen for this
problem. A constant gravitational field with acceleration g acts in the downward (positive z)
direction in the fluid, and is ignored in the solid. The x- and z-components of the Lagrangian
displacement field may be assumed to have the form

u = ry(z) cos(kx — wt) (1

w = —r,(z) sin(kx — wi),

where ¢ denotes time, k¥ the wavenumber, and w the angular frequency, corresponding to
propagation in the positive x-direction. r; and r,, functions only of z, are the displacement
eigenfunctions of the tsunami mode. The vertical stress components due to the wave can
similarly be expressed as

0zx = ra(2) cos(kx —wt) @

Ozz = —ra(z) sin(kx — wt).

We next determine the systems of equations, in both solid and fluid, and the boundary
conditions to be satisfied by the displacement-stress vector r = (r;, 75,73, 74).

Our approach so far is identical to the displacement-stress vector formulation for the
Rayleigh wave modes of a flat, vertically stratified earth. This is not surprising, since both
wave types involve particle motion in a vertical plane parallel to the propagation direction.
Therefore, for convenience, we adopt the notation which Aki & Richards (1980) apply to
Rayleigh waves and, whenever it is helpful, we refer directly to their equation numbers,
prefacing each with ‘AR’.

In the solid earth, just as in the Rayleigh-wave case, the tsunami displacement-stress
vector satisfies (AR7.28), or

r 0 k gt 0 r
d \rl —kA[A+2u)t 0 0 A +2u]? r 3)
dz 1, K2 — wipg 0 0 NN +2u)7Y | 7s

ra 0 ~wpy, -k O ra

where § = 4u(X + p)/(X + 2u) and the Lamé parameters A and u and density, pg are functions
of z. Because gravity is neglected in (3), it is not possible to obtain the corresponding system
of equations for the incompressible ocean layer simply by taking the limits u—>0, A->o,

free
surface

z=-h

OCEAN

ocean
bottom

SOLID EARTH

Figure 1, Geometry and coordinate system for tsunami calculations.
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The tsunami mode and its excitation 5

Instead, we derived the equations governing r in the fluid through a very classical
formulation (e .g. Officer 1974) beginning with a scalar velocity potential.

Assuming irrotational motion, we introduce a scalar velocity potential ¢ such that the
velocity field of the fluid is given by

v=—Vo. 4)
Since the fluid is incompressible, the equation of continuity is simply
V29 =0. (%)

We also introduce the vertical displacement of the free surface which we denote by n,where
n is positive for upward displacement (in the negative z-direction). Naturally,

'f?(X, Y, t) = hw(xt Vs ‘h, t)' (6)

Actually (6) is approximate in two ways: (1) it is linearized in n with the right-hand side
evaluated at z = —# rather than z = —A—n and (2) n is an Eulerian displacement, but since
the wave amplitudes are small and the waves taken to be periodic, the displacements are
small and the distinction between the Lagrangian and Eulerian approaches can be neglected.

Another important quantity is the pressure p in the fluid. At the free surface it must
equal atmospheric pressure po, or

p(x,y, —h —n, ) = py. )

The Bernoulli equation for an incompressibie fluid gives a general expression for the pressure
in the fluid:

L)
E-2 o nirco (®)
p ot
where p is the fluid density, £ the gravitational potential, and C(¢) is a constant of
integration with respect to spatial coordinates. 2 satisfies g = —VQ where g is the
gravitational field. We can set 2 = —g(z + &), fixing an arbitrary constant of integration. In
order to satisfy (7) and (8) in the case of static equilibrium (9¢/3¢ = 0, v = 0, = 0) we need
C(2) = polp. Then, neglecting the non-linear term ¥;v?, (8) becomes

0
P e 9)
p 0ot p
At this point we also note that from (7) and (9)
109
12 (10)
g 0rlz=—p

which has been linearized in n by taking z = —h rather than z = —h—n on the right-hand
side. A second relation between 1 and ¢ is obtained from (6) and (4), 3n/or =3¢/0z at
z = —h. Combined, these give the free surface boundary condition on the velocity potential.

2
gt 9z/ ,-_p

We now relate the classical quantities ¢ and p to the displacement-stress vector, and derive
the equations governing r in the fluid. From (4), du/0t = —9¢/dx, which together with (1)
yields

¢ = crq(z) cos(kx —wt), (12)
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6 R. P. Comer
where ¢ = w/k is the tsunami phase velocity. Then, from (9) and (12)

2
w
p=m+%@+m+p;—m@ﬁﬂh—w0 (13)

In the fluid the shear stress o,, must vanish and the normal stress g,, is simply equal to
minus the non-static component of p, so that

r3=0

o? (14)

Fa=p ;‘ ry.

Thus r; and r, are redundant in the fluid, and the analogue to (3) is a system of two first-
order equations involving only r; and r,. It is readily obtained. From (4), dw/or = —0¢/0z,
which leads to dr,/dz + kr, =0 when combined with (1) and (12). Rewriting the continuity
equation (5) as du/dx + dw/dz = 0, we find from (1) that dr,/dz + kry = 0. Hence

d [r 0 kY [r
RSl
dz Lr, -k 0 ra

It is straightforward to formulate the (linearized) boundary conditions on r. At the

interface z = 0 the vertical component of displacement w must be continuous, the shear
stress 0,, must vanish, and the vertical normal stress g,, must be continuous. Thus

polid gy = pluid gy (16a)

rgolid(o) = rguid(o) =0 (16b)
. . w?

riohd(o) = r§u1d(0) =p ;_ rfllmd(O). (16¢)

Superscripts ‘solid’ and “fluid” are added here and wherever they are needed for clarity. The
free surface boundary condition (11) can also be expressed in terms of the displacement-
stress vector. With the use of (4), (1) and (12) it becomes

wiri(—h) = gkry(—h). (17
Two more boundary conditions are required in general,
ri, 72> 0 as z-—>eo, (18)

that is, displacements must vanish at infinite depth in the solid earth.
Equation (15) may be solved analytically; forz < 0

r1(z) = A cosh kz + B sinh kz

(19)
ro(z) = —B cosh kz — A sinh kz.
The constants 4 and B and the displacement eigenfunctions r,(z) and r,(z) in the solid earth
(for z > 0) must be obtained numerically from (3) and the boundary conditions (16), (17)
and (18). Such a solution will also yield the dispersion relation for the tsunami mode, which
follows from the requirement that the equations (15) and (3) and the boundary conditions,
which are all homogeneous, be mutually consistent.
In the special case where the solid earth is an elastic half-space in which X = u = constant,
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The tsunami mode and its excitation 7

the eigenfunctions may be approximated by the following analytic expressions: forz < 0
(ocean)

ri(z) = cosh kz + (3pc?/4u) sinh kz

(20)
ry(z) = —sinh kz —(3 pc?/4u) cosh &z
and for z > 0O (solid earth)
ri(z) = —(pc*2u) (kz -1/2) exp(—kz)
ra(z) = —(pc?2u) (kz + 3/2) exp(—kz) o

ri(z) = pctk(kz) exp(—kz)
ra(z) = pc*k(kz +1) exp(—kz).

(Note that in these expressions r; and r, are dimensionless, while r3 and 7, have dimensions
of stress divided by length, so that to be strictly consistent with (1) and (2) r must be multi-
plied by a constant length scale.) It is obvious that (20) satisfies (15) exactly, and that (16)
and (18) are satisfied exactly by (20) and (21). The only approximation involved is that (21)
satisfies (3) only if the term w?py is replaced by zero. At the lower frequencies important
for tsunamis this is reasonable, and corresponds physically to neglecting inertial forces with
respect to elastic forces in the solid earth, The phase velocity ¢ must of course be calculated
before (20) and (21) can be evaluated. It can be obtained by numerically solving the disper-
sion relation that results from substituting (20) into the free surface condition (17). A phase
velocity curve computed in this way, for a typical set of mode! parameters, is illustrated in
Fig. 2.

Fig. 2 also shows that, except at very low frequencies, the phase velocity is well approxi-
mated by the well-known rigid bottom result,

¢ = [(g/k) tanh kh]'"? 22

which follows from requiring that (19) satisfy (17) and the condition r,(0) = 0. Under this
condition B/4 =0 in (19) and r = 0 in the solid earth, which also follows from (20) and (21)

WAVELENGTH, km

PHASE VELOCITY, km/s

o] } ! |

10 10 10
PERIOD, s

Figure 2, Tsunami phase velocities for a 4 km deep ocean. The parameters chosen for the half-space are
ps=3.lgem™ and A=u=52%X10"dyncm™? (corresponding to P and S velocities of 7.15 and
4.1km s™!, respectively). The period scale is valid for both curves but the wavelength scale was determined
for the rigid bottom case.
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8 R. P, Comer
X\ 1 295km A 26.2km A : 4.00km
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Figure 3. Tsunami displacement eigenfunctions in the ocean, normalized so that r,=1 at the ocean
surface. The model parameters are as in Fig. 2.

in the limit g —>oo, Since pc?/u < 1, the rigid bottom condition leads to a good approximation
of the tsunami mode eigenfunctions, which is fine for representing tsunami propagation.
However, although the quantities in (21) are very small with respect to the larger terms in
(20), they cannot be neglected in modelling the excitation of the tsunami mode by sources
within the solid earth; otherwise the excited waves would have zero amplitude!

Figs 3 and 4 illustrate examples of r; and r, calculated from (20) and (21), respectively,
for three wavelengths typical of the three regimes of linear water waves (e.g. Le Méhauté
1976):

A =295 km, /X = 0.01 — shallow water (#/\ < 0.05)
A =26.2km, 2/ =0.15 —intermediate (0.05 < A/Xx < 0.5)
A=4.00km, 4/\ = 1.0 —deep water (h/x > 0.5).

At the ocean surface r; and r, have the same sign at all three wavelengths, which corresponds
to prograde particle motions (as can be seen from (1)). Fig. 3 shows that in the ocean hori-
zontal displacements are much larger than vertical displacements for small A/X. In the
intermediate case the displacement components are comparable at the surface, while the
horizontal component is much larger at depth, and for #/X > 0.5 the components are almost
equal at all depths (circular particle orbits) and both decrease rapidly with depth, becoming
quite small near the ocean bottom, Although it does not show on the scale of Fig. 3,r,(z)

N : 295km \ @ 26.2km X\ 4.00km
T T A T T T T T T T
r,(2) r,(z) ~ }/ r(z)7]
L 1 r {r .
r,(2)
4 6 4 F1 4
r,(z) r,(2)
£ 1L 1t ]
x
- 4 hi2 1 F2
N i 1
4 F 1 ’— -
4 L1s 1 L3 8
l_ ] S S 1 i 1 i 1 i
~6 -4 -2 o] 2 -12 -8 -4 Q -6 -4 -2 Q 2
x1073 x107° x1077

Figure 4, Tsunami displacement eigenfunctions is the solid earth with the same model parameters and
normalization as Fig, 3.
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The tsunami mode and its excitation 9

does not vanish at z = 0 but is slightly negative there, changing sign when, approximately,
z = —3pc?/(4uk). (This point is typically only a few metres above the ocean bottom.) Thus
r, is indeed continuous at z =0 (while r; is not), although a comparison of Figs 3 and 4
does not make this clear. As Fig. 4 shows, the displacement eigenfunctions are orders of
magnitude smaller in the solid earth than near the ocean surface. Both components exhibit
an eventual decay with depth, controlled by the factor exp(—kz) which appears in (21),
and r; has a sign change near z = 1/k,

Finally, we note that the wavelengths used in Figs 3 and 4 were chosen deliberately to be
comparable to the modes (of angular order 135, 1525 and 10 000) illustrated in comparable
figures by Ward (1980). The two sets of results show essentially perfect agreement for the
ocean layer, while the differences in the solid earth, which are quantitative rather than
qualitative, are due to differences in the assumed elastic earth structure, The match is worst
at the shortest wavelength, because only the top few kilometres of the solid earth are
significantly penetrated by the displacement eigenfunctions and the elastic half-space is
much more rigid in the upper few kilometres than the PEM-O model used by Ward.

Energy integrals and Hamilton’s principle

In this section and the following two we turn to the problem of the excitation of the
tsunami mode by point sources within the solid earth. We apply the variational technique
of Saito (1967), extending its application to the Rayleigh-wave modes of a flat earth, as
presented by Aki & Richards (1980), to the tsunami excitation problem.

Motivated by Hamilton’s principle, we construct a Lagrangian L for the tsunami mode
in which the energy densities are averaged over time and horizontal spatial coordinates.
We proceed separately in the fluid and solid domains, beginnings with the solid. Following
Aki & Richards (1980), we substitute (1) into the expression (AR7.63) for the Lagrangian
density of an isotropic elastic solid, average so that the terms sin?(kx — wf) and cos?(kx — wt)
are replaced by 1/2, and integrate over z. Using brackets to denote the averaging process,

(LMY = Yy (w2, — k2, — kI3 —14] (23)
where the energy integrals 1, [,, I3 and I, are given by

L=Y f po(r + ) dz
0

12=1/2f [(\ +2u)7 + wrd] dz

0

I J“” ()\ dr2 di'l) d
= rn—— —ur, — ) dz
3 A 1 dz uray dz

wonl[ oo (2 (2
¢ zfo u(dz a2 z

as in (AR7.74). I, pertains to the kinetic energy in the solid and /5, /5 and I, pertain to the
elastic potential energy.

In the fluid there are two terms contributing to the Lagrangian, corresponding to the
kinetic energy and the gravitational potential energy. The kinetic energy contribution can be
expressed in terms of an integral analogous to /;, and it can in fact be integrated using Gauss’
divergence theorem, yielding an expression containing boundary terms. The potential energy

(24)
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10 R. P, Comer

contribution inherently involves boundary terms, since the tsunami is primarily a gravity
wave on the ocean’s free surface.
The kinetic energy density in the fluid is

no (G G ] @

Substituting for « and w from (1), averaging over ¢ and x as before, and integrating from
—h to 0 over z we find

(kinetic energy ) = Y2 w*s (26)
where
0
Is=1, pf 2 +rd)dz. (27)
—h

One can also express the kinetic energy within some volume of an ideal, incompressible fluid
in irrotational motion as an integral over the surface A of the volume, through the use of the
divergence theorem. Following Fetter & Walecka (1980, equation 54 .45), within the volume

kinetic energy = Y» pf ¢V¢ -dA (28)
4

where d4 is directed outward from the volume and ¢ is the velocity potential, given by (12)
for our purposes. If a portion of the surface bounding volume coincides with the free surface
of the ocean z = —4, then on that portion d4 = —zdA. Similarly, for a portion coinciding
with the ocean bottom z =0, d4 =zdA. Hence by choosing a prismatic volume bounded by

the free surface and ocean bottom, then averaging over time and horizontal coordinates, we
find

z=0

z=_h> . (29)

Using (12) and (15) to evaluate ¢ and 9¢/dz,(29) becomes identical to (26), (kinetic energy ) =
Yy w?Is, except that I is given by

0
(kinetic energy) =Y, p <¢ aﬁ
z

I=Y, 7‘: [Fa(—) ra(—h) — F98(0) rp(0)]. (30)

(27) and (30) must, of course, be equivalent, A way to confirm this equivalence is to inte-
grate (27) by parts using (15). Both expressions for /5 are useful,

Again following Fetter & Walecka (1980, equation 54.51), the gravitational potential
energy of the fluid is given by

gravitational potential energy = %2 pgf n?dA 31
4

where 7 is given by (6) and (1), and A4 is an area on the free surface z = —h of the fluid. A
term involving the deformation of the lower surface of the fluid is neglected in (31), but this
is consistent with our neglect of gravity in the solid where a term of the same order is
ignored, and 7 is in practice much larger than the amplitudes of the vertical displacement of
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The tsunami mode and its excitation 11

the ocean bottom. Next, averaging as before, we find

(gravitational potential energy ) = Y, I, (32)
where
Is = pgra(—h)]>. (33)

Finally, subtracting (32) from (26), we have the Lagrangian in the fluid
(LMY =Y, [w? s ], (34)
and combining (23) with (34) gives the (averaged) Lagrangian for the ocean—earth system,
(Ly= (LY ¢ (pidy < v (021 K2, ky— I, + w? s — ). (35)

The next step is to confirm Hamilton’s principle, that is, to demonstrate that (L) is
stationary for displacement-stress vectors satisfying (3) and (15), and boundary conditions
(16), (17) and (18). We first show that (L ) itself vanishes in this case.

We begin by multiplying the third equation of (3) by #,, the fourth equation of (3) by
ry, and adding. Next we integrate from z = 0 to oo, by parts where possible, and finally use
the first two equations of (3) to eliminate 73 and r; from the integrands in which they
remain, This yields

W~ K2 — kI3 —14= =Y [rirs + rarals=g. (36)

(30) and (32) give the analogous result for the fluid,

2

wils —Ig=Ys (Q_Z_I_) [ri(=h)ry(—h)—ri(0)r5(0)] — Pg["z(—h)]z)- 37

Adding (36) and (37), imposing the boundary conditions (16), (17) and (18), and noting
that in (37), 7(0) = r*9(0), we find

Wy — KA, — kI — 14+ w2 — I = 0. (3%)

Hence by (35) the averaged Lagrangian vanishes.

We turn now to the task of demonstrating that (L) is stationary with respect to variations
in 71(z) and r,(z), as suggested by Hamilton’s principle. That is, we show that § (L) vanishes
to first order in the variations 67,(z) and 6r,(z).

From (24) it follows that, for the solid,

(4)2611—](25]2*}:513—614:['—r36r1—r4672]g° (39)
using the relations §(dr,/dz) = d(6ry)/dz and 8(dr,/dz) = d(6r,)/dz, applying integration by

parts to the terms containing these quantities, and simplifying some terms using (3).
For the fluid it is straightforward to show from (33) that

81 = pgro(—h) 8r(—h). (40)

A similar expression for 875 follows directly from (30), but it is not useful here because it
involves 8r,(0), which has different values in solid and fluid. (This ambiguity does not occur
in (39) because there 67,(0) is multiplied by 75(0), which always vanishes.) Instead, we start
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12 R. P. Comer
from (27), which yields

0
8ls=p f (r.8ry tr,8r,) dz
—h

o 1 4
=pf_h (—; rlcg 5r2+r28r2) dz

P Y 0 1 dr,
=—=rbr, +pf (7 —+r,) brydz
k —h —h k dz
0
=2 ribr, (41)
k —h

using 8ry = (—1/k)d(8r;)/dz and (1/k)dr,/dz +r, =0, which both follow from (15). This
has the desired property of not involving &#,(0).
Finally, it follows from (35), (39), (40) and (41) that

26 (L )= (/.)2611 ——k2512 ~—k813 —514 + w2615 *616 = —r3(°°)5rl(°°) —r4(°°)6r2(°°)
2

+73(0) 57°54(0) + r4(0)57,(0) — p ‘% r10) 57,(0)

2
tp oki ri(—h) 8ry(—h) — pgra(—h) 6ry(~h). (42)

r3(o°) = r4(=°) = 0, from (3) and (18), and imposing the boundary conditions (16) and (17),
the right-hand side of (42) vanishes. Thus, in accord with Hamilton’s principle,
W21y —K*81, — k813 — 814 + w2615—81= 0. (43)

A useful formula for tsunami group velocity follows from the results that the Lagrangian
(35) vanishes when r(z) satisfies the equations of motion and boundary conditions
corresponding to a tsunami, and that it is stationary about that solution. By varying w and k
in (38) and applying (43) one finds 2w8wl—2k8kl,—8kI3+ 2wbwls =0, and equating
U to Sw/8k,

_Lt1[2k

el +1s)

where ¢ = w/k is the phase velocity,

(44)

Point force response: the tsunami residue

Here we consider the response of the ocean—earth system to a point force (Fy, F,, F;)
applied at x =0, y =0, z=d with d >0 and varying harmonically in time according to
exp(—iwt?). It will be shown that the tsunami normal mode eigenfunctions provide a
compact representation of the response in the far-field.

As Aki & Richards (1980) state, the point force is equivalent to a discontinuity in
traction on the horizontal plane z = d such that

T(d")~T(d") = —F exp(—iwt) 5(x) §(») = %)""—t) Z'rk[fT(k, m) T (r, )
“~ mv0

+fs(k, m)SE'(r, ) + fr(k, m)RY (, $)1dk (45)
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The tsunami mode and its excitation 13

(AR7.119, AR7.120) where T}, S}’ and R}’ are the cylindrical vector harmonics defined
in (AR7.117) and (AR7.113). We now use a cylindrical coordinate system (r, ¢, z) such that
x=rcos¢ and y =rsin¢ with orthogonal unit vectors 7, ¢ and z. The coefficients fr.fs
and f, are given by (AR7.125), (AR7.127) and (AR7.128), respectively.

The solution for the displacement, in solid and liquid, due to the time-harmonic point
force has the form given by (AR7.131),

exp(—iwt) &

u(r,9,z, )= ——— Z mk[ll(k, m,z, )T, )
27T m=—c= J0O (46)

+r1(k; m,z, w) s’l?(ry ¢) +r2(ky m,z, w)R’]:l(rr ¢)] dk

and the corresponding horizontal traction is

exp(—iwt) & e
= p( ) Z k[l2(k) m,z, w) T',:l(r’ ¢)
m m=—oJo

T(r,9,z, 1)

(47)
+r3(ky m,z, w) S;Cn(ry ¢) +r4(ky m,z, w)R;Cn(r’ ¢)] dk

where it is important to note that r=(ry, r,, r3, ¥4) and 1 = (4, [;) do not represent normal
mode eigenfunctions, because the equations of motion now include the point force, and
hence are no longer homogeneous, so that there is no longer a dispersion relation and & is
independent of w.

It is easy to show, however, that except at the source depth the equations of motion in
-he solid are satisfied if r satisfies (3) and 1 satisfies (AR7.24), which were derived for the
Rayleigh-wave (and tsunami) and Love-wave displacement-stress normal mode eigen-
functions, respectively. In the fluid, where shear stresses must vanish, 1 = 0 and the equations
governing r can be readily demonstrated by introducing the velocity potential

exp(—iwt hd oo
—p(—.——) Z rik, m,z, W)Y (r, $)dk (48)
27T m=—oc 0

o, ¢,z,)=iw

where Y7'(r, ¢) is the scalar harmonic defined by (AR7.113). Requiring that (46) and (48)
be consistent with (4) and (5) implies that r, and r, must satisfy (15), and by requiring that
shear tractions vanish in the fluid and that (47) and (48) be consistent with (9), we find that
rs and r4 must satisfy (14). Finally, substituting (48) into (11) and invoking (15), it can be
shown that r; and r, satisfy (17).

In addition to the free surface condition, r and 1 must satisfy boundary conditions
ensuring the continuity of the vertical displacement and vertical traction at the solid—fluid
interface, yielding (16) with k-, m- and w-dependence implicit, and I,(k, m, 0, «w) = 0. Also,
for z—>o0 1 and r must either vanish or correspond to down-going body waves, and last, but
very important, is the condition that at z = d the traction have the discontinuity prescribed
by (45). Thus

12(k7 m, d+, w) *12(k: m, d_: w) =fT(k9 m)
ryk, m,d+, w) —ri(k, m, d—, w) = fs(k, m) (49)

ra(k, m, d+, w) —ra(k, m, d—, w) = fr(k, m).
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14 R. P. Comer

We next obtain the tsunami component of (46), which clearly depends on r and not on
1. r can be constructed in the foliowing manner,

n
r=r+——— . (50)
Alk,m, w)
We require ' and r” each satisfy (3) in the solid and (14) and (15) in the fluid, and that
they independently satisfy the interface boundary conditions of continuity of vertical
displacement and continuity of the vertical component of traction on the horizontal plane.
Hence

y,$0ld (©) =, fluid (0) (51a)

pyrsolid (0) = .2 fluid (0) (51b)

p50ld©) = ! fluid (0) = p‘_“ﬁ y; fuid ©) (51¢)
2

psolid©) 2 o fid 0) = P Lo uid ) (51d)

where, for convenience, we show explicitly only the z-dependence of ' and r”. In addition,
we let r” be continuous at z =d and require that it satisfy the radiation condition (down-
going waves or vanishing displacements) while +'=0 for z > d and r' has a discontinuity in
stress at z =d, so that

ri(d-)=0

ry(d-)=0 (52)
rs(d-)=—fs

ra(d-)=—rr.

The boundary conditions (51a), (51c) and (52) completely constrain r’. Also, given the
definitions of and conditions on r’ and t”, it is clear that r as given by (50) satisfies the
equations and boundary conditions governing it, except for (17) and the vanishing of the
shear traction at z = 0. These final two conditions yield

(.02 (.4)2

ra(=h) — — ri(-h) + A [ré(—h) - ri(—h)] =0 (53a)
kg kg

r;'solid(o) + Arésolid(o) = 0’ (53b)

competing the conditions on r” and also defining A(k, m, w).

The tsunami contribution to (46) comes from the ‘tsunami pole’ where w and k =k,
satisfy the tsunami dispersion relation and A(ky, m, w) = 0. Taking the residue at this pole
we have

| 2 [rkomz, @)
g tsunami (r, 9,2, 1) = exp(—iwt) ik [d Sy (r, ¢)
m L ik @A )=k,
ry(ke,m, z, w) ]
— R (r, 9)]. 54
iy, R (54)
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The tsunami mode and its excitation 15

This is the same, essentially, as the corresponding result for Rayleigh waves, and the details
of treating the integral over k are identical in both cases, except that for Rayleigh waves
there may be several poles, corresponding to the fundamental mode and higher modes. Only
one pole exists for the tsunami mode, equivalently there is only one branch of the tsunami
dispersion curve; a more detailed discussion of this point has been given by Okal (1982).
Note, however, that our model of the ocean is appropriate for tsunamis but not for Rayleigh
waves, since the compressibility of the ocean is neglected. A similar model incorporating the
compressibility of the ocean could be used for both tsunamis and Rayleigh waves, but has no
advantage over the incompressible ocean model for the former. A further extension would
be to include a realistic density stratification in the ocean, in which case the internal gravity
modes of the ocean would be present (e.g. Lighthill 1978), but this complication would like-
wise have little advantage for the accurate modelling of tsunamis.

The displacement in (54) can be expressed in terms of the normal mode tsunami eigen-
functions and the energy integrals defined in the previous section. To show this we derive an
expression for A and differentiate it with respect to k by means of a variational method.
First we take note of two quantities having the useful property of being constant with
respect to z. In the solid (and for 0 < z < d in particular),

d ,

;(r{'r3—r{r§'+r£'r5»rér";')=0 (55)
2

which follows directly from the fact that r' and r” both satisfy (3), hence riry—rir3 +
r,rs —ryrs is invariant with respect to z in the solid. Similarly, in the fluid (—% < z < 0) we
have from (15)

d i 13 "
— (ri7y—Far1)=0 (56)
dz

so that ry r, —r, r{ is invariant. .
Now, combining (51c) with (51d) we have r;(0) — p(w¥K)ry Mid(0) + Ars(0) —
p(w?k)r; Mi4(0)] = 0. Multiplying this result by r5(0), multiplying (53a) by —pgrs(—h),

multiplying (53b) by ry *°8(--p), adding, and solving for A yields

A=—y1/7, (57)

where
2
— . solid # solid " " w " "
11211 °7(0) r3 (0)‘*"'2(0)"4(0)““97{’ [ri(—h)ry(=h)
" fluid " [4 2 (5 Sa)
- (0) r2(0)] —pglra(~n)]

and

2
" 1 ! i " I w I H "
¥2=r1 (0 1380 + 17 (0) 74 (0) — p o Muid (0) 5 (0)

(58b)
2

W, " ’ "
Yo ri(=h)r2(=h) —pgra(-h) r2 (= h).

Defining I, I,, I3, I4, I and I by (24), (30) and (33) with r” substituted for r, it is clear
from (35), (36) and (37) that (58a) can be rewritten as

717 20 KA KI5 — I3+ WP IS — 1 1+ r{ (29) 13 (22) + 73 (22) 74 (). (59)
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16 R. P. Comer

Next we consider the variation in A due to a variation in k about the point where
k =k, and A(k, m, w)=0 or, equivalently, where r” is a tsunami eigenfunction. At this
point y; =0 according to (59), (38) and (18) with r” substituted for r. Hence the variation
&, has no effect on § A and we have simply

8A=—8v1/7,. (60)
From (59) we obtain, using (43), (18) and the requirement that 877 () = §r5(e°) = 0,
Syy = —(4KI) + 211)6k. (61)

The evaluation of 7, at the point where r” is a tsunami eigenfunction is accomplished with
the aid of the two depth-independent quantities noted previously. From (17), (56) and
(51d)

2

w n " ! ”
p ? ri(=h)ry(—h) —pgry(—h)ry (—h)

~

=) % [r1(~R) r3(=h) —r;(~R) ri(~h)]
2 (62)
=p % [r1™4(0) 75 (0) —r3(0) r 4(0)]
w*? -
=p ? 7‘; ﬂuld(o) r;’ (0) _ r; (0) r: (0)

Then, combining (62) and (58b) and applying (16b), (55) and (52) we find

72 = r{*4(0) r3*8(0) — r{*89(0) 50 + 77 (0) r4(07 —73(0) 72 0)
=ri(d)r3(d-) —ri(d-)r;(d) +r)(d)ra(d-) —ry(d-) ri(d) (63)
= —fsri(d) —frri (d).

Finally, substituting (61) and (63) into (60), it is clear that

(aA) _ ak 05 + 214 (64)
3k/ k=, [fsri@)+frri(d)

where the quantities on the right are all evaluated at k =k,. Using (44), an equivalent
relation is
1 __fs(kt,m)r{'(d)+fR(kt,m)r§'(d)

(3A/3K )i =, dkycU(Iy +15)

(65)

The result (65) may be readily substituted in (54). The sum over m is readily evaluated
using the values assigned to fg and fz in (AR7.127) and (AR7.128),f5(k, 1)=(—Fx +iF))/2,
fstk, =1)y=(Fy +iFy)/2, and fg=0 for m = *1, and fr(k, 0)=F, and fr =0 form = 0
Since at the pole where k =k, " (k¢, m, z, w) is a tsunami eigenfunction, we drop the
primes and replace it by r(z), reverting to our earlier notation. Likewise we replace k¢ by
k, I{ by I,, and I{ by I, but note that these quantities are all implicit functions of w. Also,
we are interested only in the result for the far-field, where the tsunami is distinct from other
waves radiated by the point force. Thus we replace S77(r, ¢) and R (r, ¢) by the leading
terms of their large r asymptotic expansions corresponding to outgoing waves, given by
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The tsunami mode and its excitation 17

{AR7.118). Finally we have the far-field tsunami generated by a time-harmonic point force
at depth d in the solid earth:
exp(—iwt)

ySnami(y ¢ 7 )= m;) [Fory(d) +i(Fy cos¢ + Fy, sing) ry(d)]

2 172 )
X (*—k ) [r1(2) exp(—in[4)F +ry(z) exp (in/4)Z] exp(ikr). (66)
Tkr

This is identical to the corresponding result for Rayleigh waves (AR7.143) except that there
is no sum over higher modes, the kinetic energy for the ocean /s has been added to the
kinetic energy integral I; for the solid earth and, of course, r; and r, denote the tsunami
normal mode displacement eigenfunctions. Hence (66) is not surprising, but neither is it
trivial,

Tsunami from a point moment tensor source

The far-field tsunami response to a point moment tensor source in the solid earth can be
obtained by differentiating the second rank tensor Green’s function implicitly stated by
(66). This procedure parallels perfectly that for Rayleigh waves, and just as the Rayleigh
wave response to a point moment tensor source (AR7.149 and AR7.150), follows from
(AR7.143) we have from (66)

ry(2)

9\ 12
mScU(I R (——~) expli(kr + nf[4)]

tsunami _
u, r, 0,2z, w)=
nkr

X {[Mxx cos’p + 2M,, sin@ cos¢ + M,,, sin®¢] kr,(d) (67a)

dr'l dr1
+ My, —— (d) +i{M,; cos¢ + M,,; sin¢] (— (d)-krz(d))}
dz dz

u:sunaml(r’ ¢,Z, (JJ) =

- rl(z) ( 2
8cU(l +1s)

1/2
) expliter -4l (675)

;rkr

where the quantity in braces { } in (67b) is the same as that in (672). Note that these
equations are in the frequency domain; each moment tensor component M;; is a function
of w given by the Fourier transform of its time domain representation M;(¢). Also note
that the moment tensor must be symmetric, since it represents an internal source that
applies no torque.

From (67) both the vertical and radial components of the tsunami from a point moment-
tensor source can be synthesized at any depth in the ocean or earth. Since the vertical
displacement at the ocean surface is usuaily the quantity of greatest interest, we note from
(6) with u, = w, and (67a) that

—h(—h)S(w) 2 \112 .
8cU(I +15) (—) expliChr +m )] { } . ©5)

nr, ¢, w)= ey

As before 7 is positive for upward displacement of the ocean surface, that is, displacement in
the negative z.direction. Here we have made the additional simplification of assuming that
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18 R. P. Comer

all the moment tensor components share a common time dependence, so that M;(z) =
S(t)M;; where My; = M;; (=) is now the static moment tensor, S(t=e)=1,and

oo

S(w)= i f S(t) exp(iwt) dt (69)

is the Fourier transform of the source time history. The time domain waveform of the
tsunami due to the point moment tensor source can thus be obtained by operating on (68)
with the inverse Fourier transform

f exp(—iwr)dw.

The relation (68) can thus be expressed in the time domain as

n(r, ,1) = [Myy cos’e + LM,y sing cos¢ + My, sin®g] f1(r, ©) + Mz fo(r, 1)
+[My; coso +M,, sin o) f3(r, ) (70)

where f(7, 1), f2(r, t) and f5(r, f) are the inverse transforms, respectively, of

Filr, w) = —ra(—h)N(w) S(w) (hfr)""* expi(kr + n/4)] kri(d)

dr2

£a(r, ) = =ra(~W)N() S() (/r)** expliChr + n/4)] —* (@) (71)
4
dr,
f3(r, w) = —ry(—h)N(w)S(w) (h/r)!'* expi(kr + 3n/4)] (—d; @ )—krz(d))
where
2 1/2

Meoy= 8cU(Iy +Is) (nkh) ' 72)

This remarkably simple result permits many relations to be readily examined. For example,
from (71) and the approximate eigenfunctions (21) we find that for the uniform elastic solid
earth the relative tsunami excitation versus depth is governed by

| fil=lkz—1/2 |exp(—kz)
| f2] < {kz +1/2)exp(—kz) (73)
| f3l = 2kz exp(—kz).

The expressions on the right-hand side of (73) are plotted in Fig. 5 from which it is clear
that except at extremely shallow depths the moment tensor components M, ;, My, and M,,,
have the largest contributions to the tsunami amplitude. Also evident are the eventual decay
of tsunami excitation with depth and the fact that this decay occurs more rapidly for short
wavelengths and, conversely, that shallow sources produce more short-wavelength radiation
than deep sources. Fixing the source depth d we can then plot the complex spectra given by
(71) and the corresponding waveforms in the time domain, but first it is necessary to choose
the function S(¢).
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The tsunami mode and its excitation 19
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Figure S, Relative tsunami excitation versus depth for an ocean overlying an elastic half-space.

We consider two choices, S(f) = H(t) and S(z) =R(7, t). Here H(¢) denotes the step
function,

(0 t<0
H@r)= 1/2 =0 (742)
ll t>0

and R(r, t) denotes the ramp function with rise time 7,

l'0 t<0
R(r,0)= /7 O<rt=r (74b)
11 t=T1

Of course, these coincide in the limit 7—>0. Taking the Fourier transforms of (74a) and
(74b), following (69), we find

Hw)=n8(w) +ilw (75a)

exp(iwr)—1

sz

R(1,w)=mb(w) +

2 sin(wt/2) . (73b)
=78(w) + i expli{m + wr)/2].
w

€20z AInr €0 uo 1senb Aq £80€z8/1L/1/../21P1e/1lB/woo dnoolwspede//:sdpy wol papeojumo(q



20 R. P. Comer

£

& 600

[=

5 [

5

=4

”o ,, ‘\\

= L N

5400 , \

Q ////"\ R ‘\

@ P . .

£ # N

© 7, \ N

el 7/ N

% 200 - 7/ N

& ! : N

=} / ) \\ \

2 // . NN

© K NN
= , N
§ o L 1 | 1
o 0 002 004 006 0.08 o]

ANGULAR FREQUENCY, rad/sec

Figure 6. Amplitude spectral of f, (solid line), f, (dashed line) and f, (dotted line), for = 3000 km,
d = 5km, r = 0, and the model parameters given in the text,
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Figure 7. Amplitude spectra of f,, f, and f, as in Fig. 6 but withd = 15 km.
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Figure 8, Amplitude spectra of f,, f, and f, as in Fig. 6 but with d = 50 km.
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The tsunami mode and its excitation 21

We now present several examples of f;, f, and f5 and examine their form in both the time
and frequency domains. Details on the numerical computations are given by Comer (1982).
Here we simply note that the waveform synthesis involved an application of the Fast Fourier
Transform algorithm via the FORTRAN subroutine FOUR1 by Norman Brenner (MIT Lincoln
Laboratory 1967) and that the number of computations was reduced by interpolating in
frequency using the FORTRAN subroutine SPLINE by Forsythe, Malcolm & Moler (1977). In
all the examples the ocean depth is set at 5km and that the solid earth is an elastic half-
space with & =7.1kms™, §=4.1kms™ and py = 3.1g cm™. Initially we take S(¢) = H(¢)
and r = 3000 km,

Figs 6, 7 and 8 show the amplitude spectra of f3, f, and f3 for different source depths,
d=5,15 and 50km, respectively. The spectra are quite smooth, which is not surprising,
except that in all three figures £, has a zero. This reflects the zero in its excitation curve as
shown in Fig. 5. A decrease in amplitude with increasing source depth is evident, especially
for higher frequencies. It is also clear that the amplitude spectrum of f; is substantially
smaller than the other two. The fact that we have chosen a particular value of r for these
examples is unimportant, since it is clear from (71) that the amplitude spectra scale
according to "2 independently of w.

Fig. 9 illustrates the phase spectra of f; and f,, which are identical if one neglects the
jump of 7 in the phase of f; at the point where | fi(w)| = 0. The phase spectrum of f3 is
identical to the others except for a phase advance of #/2, which is indistinguishable on the
scale of the figure. We must note that the phase illustrated in Fig. 9 is not relative to the
origin time of the event, but rather is relative to the long-wave arrival time ¢, =r/\/ﬁ. This
corresponds to replacing k(w)r by k(w)r—wt, in (71). The phase is close to zero for the
low frequencies and a phase delay (reflecting the tsunami dispersion) occurs for the higher
frequencies. As in the case of the amplitude spectra, the particular value of r is unimportant
since, neglecting the frequency-independent terms, the phase spectra of fy, f; and f3 are
proportional to 7 only through the term r{k(w)—w/N\/gh].

The waveforms synthesized from the spectra illustrated in Figs 6—9 are shown in Figs 10,
11 and 12 for source depths of 5, 15 and 50 km, respectively. As the amplitude spectra
indicate, f; is much smaller than f, or f3. The zero in the spectrum of f; is reflected in the
relative complexity of its waveform. Also, the overall amplitudes and the proportion of high
frequencies decrease with source depth and the difference in the initial phase of f; compared

2000

1500
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PHASE, radians

500 —

I i I
0 002 004 0.06 0.08 0.l
ANGULAR FREQUENCY, rod/sec

Figure 9. Phase spectrum, relative to t, = ¢/(gh)"?, of f, corresponding to Figs 6, 7 and 8. On this scale
the phase spectra of f, and f, arc indistinguishable from the curve shown here.
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Figure 10. Elementary waveforms f,(r, 1), f,(r, t) and f,(r, t) for r = 3000km, d = Skm, 7 = 0, and the

model parameters given in the text. Each interval on the vertical scale is 0.5 cm/1027dyn cm.

10,000 12,000 14,000 16,000 18,000
TIME, SEC

Figure 11. Elementary waveforms as in Fig. 10 forr = 3000km,d = 15km and 7 = 0.
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Figure 12, Elementary waveforms as in Fig. 10 forr = 3000km, d = S0km and 7 = 0.
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Figure 13. Elementary waveforms as in Fig, 10 for 7 = 3000km,d = 15km and 7 = 120s.
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Figure 14, Elementary waveforms as in Fig. 10 for » = 300km, d =15 km and 7 = 0. Each interval on the
vertical scale is S cm/10%"dyn cm.

to f; and f, is evident. Like Fig. 11, Fig. 13 shows the waveforms for r = 3000 km and
d =15km, but with S(t)=R(7, ) and 7=120s. Clearly setting the rise time even to this
rather large value has little effect on the waveforms except for the later dispersive portions.
Fig. 14 shows another example with d =15km and 7 =0, but with » = 300 km. Closer to the
source the waveforms are larger in amplitude and less dispersed, which is not surprising.

Having compared a range of examples of the elementary waveforms fy, f, and f5 it is very
instructive to see which ones are radiated by some simple double couple sources. For
example, a source whose only non-zero moment tensor components are My, = My x =M,
excites a tsunami of the form

n(r, ¢, 1) =My sin2¢ f1(r, ). (76a)

This is a pure strike-slip source whose lower-hemisphere focal mechanism is illustrated in
Fig. 15(a). With non-zero components M,,, =M, and M,, =M,,

n(r, ¢, 6) = Mo [—sin’¢ f1(r, £) + f2(r, 1)] (76b)

and the source has a pure thrust mechanism with a dip of 45° as illustrated in Fig. 15(b).
Finally, if M,,, = M,, = M, are the only non-zero moment tensor components then

n, ¢, 6)=Mosing f(r, ). (76¢)

This third example corresponds to the vertical dip-slip mechanism of Fig. 15(c). The arrows
next to the mechanisms in Fig. 15 indicate azimuths for which the tsunamis have the
simple forms nn = M,yf,, n = Mof, and n = Myf;. Note that since f, consistently has a much
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Figure 15, Three simple double couple focal mechanisms: (a) strike-slip, (b) 45° thrust and (c) vertical
dip-stip. The lower hemisphere is shown and compressional quadrants are shaded. The arrows show
directions in which the tsunami waveforms from a point source correspond to elementary waveforms
multiplied by the scalar moment.

smaller amplitude than f, or f; in Figs 10—14, the strike-slip mechanism (Fig. 15a, equation
76a) is substantially less efficient for tsunami generation than the dip-slip mechanisms. This
is in accord with the observation (e.g. lida 1970) that tsunamis generated by strike-slip
earthquakes are rare and never large, although the rarity of large submarine strike-slip
earthquakes themselves is undoubtedly also a factor.

Finally, we note that the strike-slip mechanism of Fig. 15(a) and the vertical dip-slip
mechanism of Fig. 15(c) correspond to examples presented by Ward (1980). Comer (1982)
has shown by a direct comparison that the waveforms computed from the flat earth normal
mode theory, for these two mechanisms, are in excellent agreement with Ward’s. There are
minor discrepancies, but these are surprisingly small in view of the substantial differences
between the solid earth models that were used. Because of the efficiency of the Fast Fourier
Transform (and, to a small extent, because of our use of analytic eigenfunctions) the flat
earth calculations are substantially faster.

Discussion

We have solved the tsunami mode excitation problem for an arbitrary depth dependence of
the density and the elastic moduli in the solid earth, but the computed examples are
restricted to the use of the approximate, analytic eigenfunctions for an elastic half-space
underlying the ocean. This restriction could be removed through a numerical solution of
(3). As for the case of seismic surface waves, there are a number of possible approaches to
this problem. For tsunamis, the solution must be subject to the condition (18) and be
matched to (19) and (17) through the ocean floor boundary conditions (16).

One possibly important effect of a realistic solid earth model is the influence of a sedi-
mentary layer at the ocean bottom. This problem has been examined, with regard to propa-
gation, by Okal (1982) and shown to be negligible for practical cases. Low rigidity of the
ocean floor may be important for tsunami excitafion by very shatiow sources, however,
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Another natural extension of our model is the inclusion of finite earthquake sources. This
has been partially developed by Comer (1982), and applied to an analysis of real tide gauge
data. Such further developments and applications will be considered in future papers. Also,
a direct application of the point source solution presented here, a check on the general
validity of the traditional, partially coupled tsunami generation models, is the subject of a
companion paper (Comer 1984).
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